相关习题
 0  235626  235634  235640  235644  235650  235652  235656  235662  235664  235670  235676  235680  235682  235686  235692  235694  235700  235704  235706  235710  235712  235716  235718  235720  235721  235722  235724  235725  235726  235728  235730  235734  235736  235740  235742  235746  235752  235754  235760  235764  235766  235770  235776  235782  235784  235790  235794  235796  235802  235806  235812  235820  266669 

科目: 来源: 题型:选择题

2.下列双曲线中,焦点在x轴上且渐近线方程为y=±$\frac{1}{4}$x的是(  )
A.x2-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-y2=1C.$\frac{{y}^{2}}{16}$-x2=1D.y2-$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

1.命题“?x0∈R,x02-x0+1<0”的否定是(  )
A.?x0∈R,x02-x0+1≥0B.?x0∉R,x02-x0+1≥0
C.?x∈R,x2-x+1≥0D.?x∉R,x2-x+1≥0

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图所示,在四棱锥A-BCDE中,AB⊥平面BCDE,四边形BCDE为矩形,F为AC的中点,AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)证明:EF⊥BD;
(Ⅱ)在线段AE上是否存在一点G,使得二面角D-BG-E的大小为$\frac{π}{3}$?若存在,求$\frac{AG}{AE}$的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图所示,三棱柱A1B1C1-ABC的侧棱AA1⊥底面ABC,AB⊥AC,AB=AA1,D是棱CC1的中点.
(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:填空题

18.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,若在C上存在一点P,使得PO=$\frac{1}{2}$|F1F2|(O为坐标原点),且直线OP的斜率为$\frac{4}{3}$,则,双曲线C的离心率为$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.直线ax+y+2=0的倾斜角为135°,则a=1.

查看答案和解析>>

科目: 来源: 题型:选择题

16.在三棱锥P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,BC=2,则三棱锥P-ABC的外接球的表面积的最小值为(  )
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目: 来源: 题型:解答题

15.求满足下列条件的直线方程:
(1)已知A(2,2)和直线l:3x+4y-20=0,求过A和直线l垂直的直线方程;
(2)求过定点P(2,3)且在两坐标轴上的截距相等的直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

14.下列说法错误的是(  )
A.命题“若x2-5x-6=0”则“x=2”的逆否命题是“若x≠2”则“x2-5x-6≠0”
B.若命题p:存在${x_0}∈R,x_0^2+{x_0}+1<0$,则¬p:对任意x∈R,x2+x+1≥0
C.若x,y∈R,则x=y是“$xy≥{(\frac{x+y}{2})^2}$”的充要条件
D.已知命题p和q,若“p或q”为假命题,则命题p和q中必一真一假

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$sinx),$\overrightarrow{b}$=(sinx,2cosx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$,若不等式f(x)≤m在[0,$\frac{π}{2}$]上有解,则实数m的最小值为(  )
A.0B.-1C.2D.-2

查看答案和解析>>

同步练习册答案