相关习题
 0  235660  235668  235674  235678  235684  235686  235690  235696  235698  235704  235710  235714  235716  235720  235726  235728  235734  235738  235740  235744  235746  235750  235752  235754  235755  235756  235758  235759  235760  235762  235764  235768  235770  235774  235776  235780  235786  235788  235794  235798  235800  235804  235810  235816  235818  235824  235828  235830  235836  235840  235846  235854  266669 

科目: 来源: 题型:选择题

1.若集合M={x|(x-1)(x-4)=0},N={x|(x+1)(x-3)<0},则M∩N=(  )
A.B.{1}C.{4}D.{1,4}

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1({m∈R})$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对任意的两个正实数x1,x2,若g(x1)<f'(x2)恒成立(f'(x)表示f(x)的导数),求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,两焦点之间的距离为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB(O为坐标原点).

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)求点A到平面PBD的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某校开展运动会,招募了8名男志愿者和12名女志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)
若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.
(Ⅰ)求8名男志愿者的平均身高和12名女志愿者身高的中位数;
(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

16.△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC=(2a-c)cosB.
(Ⅰ)求B;
(Ⅱ)若$b=\sqrt{7}$,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知数列{an}中,a1=1,a2=6,an+2=an+1-an,则a2016=-5.

查看答案和解析>>

科目: 来源: 题型:选择题

14.某程序框图如图所示,执行该程序,若输入4,则输出S=(  )
A.10B.17C.19D.36

查看答案和解析>>

科目: 来源: 题型:选择题

13.若复数z=1+i,则$\frac{z^2}{i}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知数列{an}满足${a_n}+{a_{n-1}}={({-1})^{\frac{{n({n+1})}}{2}}}n,{S_n}$是其前n项和,若S2017=-1007-b,且a1b>0,则$\frac{1}{a_1}+\frac{2}{b}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案