相关习题
 0  235758  235766  235772  235776  235782  235784  235788  235794  235796  235802  235808  235812  235814  235818  235824  235826  235832  235836  235838  235842  235844  235848  235850  235852  235853  235854  235856  235857  235858  235860  235862  235866  235868  235872  235874  235878  235884  235886  235892  235896  235898  235902  235908  235914  235916  235922  235926  235928  235934  235938  235944  235952  266669 

科目: 来源: 题型:选择题

18.如图所示的算法流程图中,第3个输出的数是(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x+2y+2≥0}\\{2x-y+2≤0}\\{x≤0}\end{array}\right.$,则z=3x-y的最大值为(  )
A.1B.-$\frac{16}{5}$C.-2D.不存在

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且椭圆上的点到焦点的距离最小值为1,若F为左焦点,A为左顶点,过F的直线交椭圆于M,N直线AM,AN交直线x=t(t<-2)于B,C两点.
(1)求椭圆方程;
(2)若以BC为直径的圆过F,求t的值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=(  )
A.-1B.-2C.-3D.不确定

查看答案和解析>>

科目: 来源: 题型:解答题

14.在平面直角坐标系中,O为坐标原点,A,B,C三点满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求证:A,B,C三点共线;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0,$\frac{π}{2}$],f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m2+$\frac{2}{3}$)•|$\overrightarrow{AB}$|的最小值为$\frac{1}{2}$,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=2x3-3(a+1)x2+bx.
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求实数a、b的值;
(2)若b=6a,a>1,求f(x)在闭区间[0,4]上的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.设a>0,若函数y=$\frac{8}{x}$,当x∈[a,2a]时,y的范围为[$\frac{a}{4}$,2],则a的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(12,5)=2,下面是一个算法的程序框图,当输入的n为77时,则输出的结果为(  )
A.9B.5C.11D.7

查看答案和解析>>

科目: 来源: 题型:解答题

10.(1)设f(x)=ax+b,且$\int_{\;-1}^{\;1}{{{[{f(x)}]}^2}dx}=2$,求f(a)的取值范围.
(2)求函数f(x)=x3-3x过点P(1,-2)的切线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数$f(x)=\frac{1}{3}{x^3}+ax+b(a,b∈R)$在x=2处取得极小值$-\frac{4}{3}$.
(1)求f(x)的单调递增区间;
(2)若$f(x)\;≤{m^2}+m+\frac{22}{3}$在[-4,3]上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案