相关习题
 0  235829  235837  235843  235847  235853  235855  235859  235865  235867  235873  235879  235883  235885  235889  235895  235897  235903  235907  235909  235913  235915  235919  235921  235923  235924  235925  235927  235928  235929  235931  235933  235937  235939  235943  235945  235949  235955  235957  235963  235967  235969  235973  235979  235985  235987  235993  235997  235999  236005  236009  236015  236023  266669 

科目: 来源: 题型:解答题

9.已知集合M是同时满足下列条件的函数f(x)的全体:①f(x)的定义域为(0,+∞);②对任意的正实数x,都有f(x)=f(${\frac{1}{x}}$)成立.
(1)设函数f(x)=$\frac{x}{{1+{x^2}}}$(x>0),证明:f(x)属于集合M,且存在定义域为[2,+∞)的函数g(x),使得对任意的正实数x,都有g(x+$\frac{1}{x}}$)=f(x)成立;
(2)对于集合M中的任意函数f(x),证明:存在定义域为[2,+∞)的函数g(x),使得对任意的正实数x,都有g(x+$\frac{1}{x}}$)=f(x)成立.

查看答案和解析>>

科目: 来源: 题型:解答题

8.定义区间(m,n),[m,n],(m,n],[m,n)的长度均为n-m,其中n>m.
(1)若关于x的不等式ax2+12x-3>0的解集构成的区间的长度为$2\sqrt{3}$,求实数a的值;
(2)求关于x的不等式x2-3x+(sinθ+cosθ)<0(θ∈R)的解集构成的区间的长度的取值范围;
(3)已知关于x的不等式组$\left\{\begin{array}{l}\frac{7}{x+2}>1\\{log_2}x+{log_2}({tx+2t})<3\end{array}\right.$的解集构成的各区间长度和为5,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若函数$f(x)=\frac{ax}{{{x^2}+b}}$的图象如图所示,其中,当x=1时,函数f(x)取得最大值为1,则a+b=3.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知f(x)=ax2(a∈R),g(x)=2ln x.
(1)当a=1时,求函数F(x)=f(x)-g(x)的单调区间.
(2)若方程f(x)=g(x)在区间[$\sqrt{2}$,e]上有两个不等解,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.长方体ABCD-A1B1C1D1中,AB=BC=2,过A1,C1,B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,这个几何体的体积为$\frac{40}{3}$
(1)求证:直线A1B∥平面CDD1C1
(2)求证:平面ACD1∥平面A1BC1
(3)求棱A1A的长.

查看答案和解析>>

科目: 来源: 题型:解答题

4.定义在数集U内的函数y=f(x),若对任意x1,x2∈U都有|f(x1)-f(x2)|<1,则称函数y=f(x)为U上的storm函数.
(Ⅰ)判断下列函数是否为[-1,1]内storm函数,并说明理由:
①y=2x-1+1,②$y=\frac{1}{2}{x^2}+1$;
(Ⅱ)若函数$f(x)=\frac{1}{2}{x^2}-bx+1$在x∈[-1,1]上为storm函数,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.化简、求值.
(Ⅰ)$\sqrt{{a^{\frac{1}{4}}}•\sqrt{a•\sqrt{a}}}$
(Ⅱ)log23•log35•log54.

查看答案和解析>>

科目: 来源: 题型:填空题

2.某校高一(1)班50个学生选择校本课程,他们在A、B、C三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如表:
模块模块选择的学生人数模块模块选择的学生人数
A28A与B11
B26A与C12
C26B与C13
则三个模块都选择的学生人数是6.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)是定义在R上的奇函数,且当x>0时,$f(x)={(\frac{1}{2})^x}+1$
(1)求函数f(x)的解析式
(2)画出函数的图象,根据图象写出函数f(x)的单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

20.求下列各式的值
(1)1.5${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(-\frac{2}{3})^{\frac{2}{3}}}$
(2)2log32-log3$\frac{32}{9}+{log_3}8-{5^{2{{log}_5}3}}$.

查看答案和解析>>

同步练习册答案