相关习题
 0  235868  235876  235882  235886  235892  235894  235898  235904  235906  235912  235918  235922  235924  235928  235934  235936  235942  235946  235948  235952  235954  235958  235960  235962  235963  235964  235966  235967  235968  235970  235972  235976  235978  235982  235984  235988  235994  235996  236002  236006  236008  236012  236018  236024  236026  236032  236036  236038  236044  236048  236054  236062  266669 

科目: 来源: 题型:填空题

12.如图所示,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,过F的直线l交双曲线的渐近线于A,B两点,且直线l的倾斜角是渐近线OA倾斜角的2倍,若$\overrightarrow{AF}=2\overrightarrow{FB}$,则该双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆E:$\frac{x^2}{4}+\frac{y^2}{2}$=1,
(1)若椭圆上存在两点A,B关于直线y=-2x+1对称,求直线AB的方程;
(2)过$P(\sqrt{2},5\sqrt{2})$的直线l交椭圆于M,N两点,求|PM|•|PN|的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图所示,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PB的中点.
(Ⅰ)证明:AE⊥平面PAD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最
大角的正切值为$\sqrt{3}$,求二面角B-AF-C的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$A(1,\frac{{2\sqrt{3}}}{3})$,离心率为$\frac{{\sqrt{3}}}{3}$,左焦点为F.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:$x+\sqrt{2}y-1=0$交椭圆于A,B两点,求△FAB的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,$BC=EF=\frac{1}{2}AB$,∠BAD=60°,G为BC的中点.
(Ⅰ)求证:FG∥平面BED;
(Ⅱ)求证:平面BED⊥平面AED.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,圆锥的顶点为P,底面圆O半径为1,圆锥侧面积为$\sqrt{2}π$,AB是圆O的直径,点C是圆O上的点,且$BC=\sqrt{2}$.
(Ⅰ)求异面直线PA与BC所成角;
(Ⅱ)点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知直线l与球O有且只有一个公共点P,从直线l出发的两个半平面α,β截球O的两个截面圆的半径分别为1、2,二面角α-l-β的平面角为$\frac{2π}{3}$,则球O的表面积$\frac{112}{3}π$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知平面α∩平面β=直线l,点A,C∈α,点B,D∈β,且A,B,C,D∉l,点M,N分别是线段AB,CD的中点.(  )
A.当|CD|=2|AB|时,M,N不可能重合
B.M,N可能重合,但此时直线AC与l不可能相交
C.当直线AB,CD相交,且AC∥l时,BD可与l相交
D.当直线AB,CD异面时,MN可能与l平行

查看答案和解析>>

科目: 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.$(1+\sqrt{2}){m^2}$B.$(1+2\sqrt{2}){m^2}$C.$(2+\sqrt{2}){m^2}$D.$(2+2\sqrt{2}){m^2}$

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知直线m,n和平面α,下列推理正确的是(  )
A.$\left.{\begin{array}{l}{m⊥n}\\{n?α}\end{array}}\right\}⇒m⊥α$B.$\left.{\begin{array}{l}{m⊥n}\\{n⊥α}\end{array}}\right\}⇒m∥α$C.$\left.{\begin{array}{l}{m⊥α}\\{n∥α}\end{array}}\right\}⇒m⊥n$D.$\left.{\begin{array}{l}{m∥α}\\{n?α}\end{array}}\right\}⇒m∥n$

查看答案和解析>>

同步练习册答案