相关习题
 0  235883  235891  235897  235901  235907  235909  235913  235919  235921  235927  235933  235937  235939  235943  235949  235951  235957  235961  235963  235967  235969  235973  235975  235977  235978  235979  235981  235982  235983  235985  235987  235991  235993  235997  235999  236003  236009  236011  236017  236021  236023  236027  236033  236039  236041  236047  236051  236053  236059  236063  236069  236077  266669 

科目: 来源: 题型:解答题

18.已知函数f(x)=x3+ax2-a2x+m(a>0).
(1)若a=1时函数f(x)有三个互不相同的零点,求实数m的取值范围;
(2)若对任意的a∈[3,6],不等式f(x)≤1在[-2,2]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,是导数y=f′(x)的图象,则函数y=f(x)的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过点P(0,3)的直线m与椭圆C交于A,B两点,若A是PB的中点,求直线m的斜率.

查看答案和解析>>

科目: 来源: 题型:解答题

15.给定矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$,B=$[\begin{array}{l}{-\frac{3}{2}}&{2}\\{1}&{-1}\end{array}]$,设椭圆$\frac{{x}^{2}}{4}$+y2=1在矩阵AB对应的变换下得到曲线F,求F的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

14.函数y=lnx-x的单调递减区间是(  )
A.(1,+∞)B.(0,1)C.(0,1),(-∞,0)D.(1,+∞),(-∞,0)

查看答案和解析>>

科目: 来源: 题型:解答题

13.定义非零向量$\overrightarrow{OM}$=(a,b)的“相伴函数”为f(x)=asinx+bcosx(x∈R),向量$\overrightarrow{OM}$=(a,b)称为函数f(x)=asinx+bcosx(x∈R)的“相伴向量”(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S
(1)设h(x)=$\sqrt{3}$cos(x+$\frac{π}{6}$)+3cos($\frac{π}{3}$-x)(x∈R),请问函数h(x)是否存在相伴向量$\overrightarrow{OM}$,若存在,求出与$\overrightarrow{OM}$共线的单位向量;若不存在,请说明理由.
(2)已知点M(a,b)满足:$\frac{b}{a}∈(0,\sqrt{3}$],向量$\overrightarrow{OM}$的“相伴函数”f(x)在x=x0处取得最大值,求tan2x0的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正弦值为$\frac{{\sqrt{15}}}{5}$,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.若a=sin(sin2013°),b=sin(cos2013°),c=cos(sin2013°),d=cos(cos2013°),则a、b、c、d从小到大的顺序是b<a<d<c.

查看答案和解析>>

科目: 来源: 题型:选择题

10.给出下列结论:
①(cosx)′=sinx;
②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;
③若y=$\frac{1}{{x}^{2}}$,则y′=-$\frac{1}{x}$;
④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

9.设正四面体ABCD的四个面BCD,ACD,ABD,ABC的中心,分别为O1,O2,O3,O4则直线O1O2与O3O4所成角的大小为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案