相关习题
 0  235889  235897  235903  235907  235913  235915  235919  235925  235927  235933  235939  235943  235945  235949  235955  235957  235963  235967  235969  235973  235975  235979  235981  235983  235984  235985  235987  235988  235989  235991  235993  235997  235999  236003  236005  236009  236015  236017  236023  236027  236029  236033  236039  236045  236047  236053  236057  236059  236065  236069  236075  236083  266669 

科目: 来源: 题型:解答题

18.如图,在四棱锥O-ABCD中,底面ABCD是四边长为$\sqrt{2}$的菱形,$∠ABC=\frac{π}{4},OA⊥$底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:平面OAC⊥平面OBD;
(2)求平面BMN与平面OAD所成锐二面角的大小.

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数y=e|-lnx|-|x-1|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设a≤3,函数f(x)=x|x-a|-a.
(1)若f(x)为奇函数,求a的值;
(2)若对任意的x∈[2,3],f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

15.$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{π}{2}}^{\frac{π}{2}}{x^3}dx-\int_1^2{({\frac{1}{x}-x})dx=}$8π+ln2-$\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.在△ABC中,$\frac{sinA}{sinB}=2,BCcosB+ACcosA=1$,则有如下说法:①AB=1;②△ABC面积的最大值为$\frac{1}{3}$;③当△ABC面积取到的最大值时,$AC=\frac{2}{3}$;则上述说法正确的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数f(x)的定义域为R,且x3f(x)+x3f(-x)=0,若对任意x∈[0,+∞)都有3xf(x)+x2f'(x)<2,则不等式x3f(x)-8f(2)<x2-4的解集为(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-4,4)D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知二阶矩阵M有特征值λ=8及对应的一个特征向量$\overrightarrow{e_1}=[\begin{array}{l}1\\ 1\end{array}]$,并且矩阵M将点(-1,3)变换为(0,8).求矩阵M.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}的前n项积为Tn,即Tn=a1a2…an
(1)若数列{an}为首项为2016,公比为$q=-\frac{1}{2}$的等比数列,
①求Tn的表达式;②当n为何值时,Tn取得最大值;
(2)当n∈N*时,数列{an}都有an>0且${T_n}•{T_{n+1}}={({a_1}{a_n})^{\frac{n}{2}}}{({a_1}{a_{n+1}})^{\frac{n+1}{2}}}$成立,求证:{an}为等比数列.

查看答案和解析>>

科目: 来源: 题型:解答题

10.若函数f(x)在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)当定义域为[-1,1],试判断f(x)=x4+x3+x2+x-1是否为“局部奇函数”;
(2)若g(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的范围;
(3)已知a>1,对于任意的$b∈[1,\frac{3}{2}]$,函数h(x)=ln(x+1+a)+x2+x-b都是定义域为[-1,1]上的“局部奇函数”,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知平面直角坐标系xoy内两个定点A(1,0)、B(4,0),满足PB=2PA的点P(x,y)形成的曲线记为Γ.
(1)求曲线Γ的方程;
(2)过点B的直线l与曲线Γ相交于C、D两点,当△COD的面积最大时,求直线l的方程(O为坐标原点);
(3)设曲线Γ分别交x、y轴的正半轴于M、N两点,点Q是曲线Γ位于第三象限内一段上的任意一点,连结QN交x轴于点E、连结QM交y轴于F.求证四边形MNEF的面积为定值.

查看答案和解析>>

同步练习册答案