相关习题
 0  235890  235898  235904  235908  235914  235916  235920  235926  235928  235934  235940  235944  235946  235950  235956  235958  235964  235968  235970  235974  235976  235980  235982  235984  235985  235986  235988  235989  235990  235992  235994  235998  236000  236004  236006  236010  236016  236018  236024  236028  236030  236034  236040  236046  236048  236054  236058  236060  236066  236070  236076  236084  266669 

科目: 来源: 题型:填空题

8.在平面直角坐标系内,点P(x0,y0)到直线Ax+By+C=0的距离d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$运用类比的思想,我们可以解决下面问题:在空间内直角坐标系内,点 P(2,1,1)到平面3x+4y+12z+4=0的距离d=2.

查看答案和解析>>

科目: 来源: 题型:选择题

7.设e是椭圆$\frac{x^2}{k}+\frac{y^2}{4}=1$的离心率,且$e∈({\frac{1}{2},1})$,则实数k的取值范围是(  )
A.(0,3)B.$({3,\frac{16}{3}})$C.(0,2)D.$({0,3})∪({\frac{16}{3},+∞})$

查看答案和解析>>

科目: 来源: 题型:选择题

6.函数f(x)=2x-lnx的单调递减区间为(  )
A.$({-∞,\frac{1}{2}})$B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})$D.(0,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow{b}$=(6,0,2),$\overrightarrow{a}$∥$\overrightarrow{b}$,则λ的值为(  )
A.$\frac{1}{5}$B.5C.$-\frac{1}{5}$D.-5

查看答案和解析>>

科目: 来源: 题型:解答题

4.用总长14.8m的钢条制作一个长方体容器的框架,若容器底面的长比宽多0.5m,要使它的容积最大,则容器底面的宽为多少?

查看答案和解析>>

科目: 来源: 题型:解答题

3.某研究机构对高二文科学生的记忆力x和判断力y进行统计分析,得下表数据
X681012
Y2356
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出f'(x)=3x2-6x关于f'(x)=0的线性回归方程x1=0;
(3)试根据(2)求出的线性回归方程,预测记忆力为14的同学的判断力.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

查看答案和解析>>

科目: 来源: 题型:解答题

2.男婴为24人,女婴为8人;出生时间在白天的男婴为31人,女婴为26人.
(1)将下面的2×2列联表补充完整;
出生时间
性别
晚上白天合计
男婴
女婴
合计
(2)能否在犯错误的概率不超过0.1的前提下认为婴儿性别与出生时间有关系?
参考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)独立性检验的临界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目: 来源: 题型:选择题

1.下列说法不正确的是(  )
A.综合法是由因导果的顺推证法
B.分析法是执果索因的逆推证法
C.分析法是从要证的结论出发,寻求使它成立的充分条件
D.综合法与分析法在同一题的证明中不可能同时采用

查看答案和解析>>

科目: 来源: 题型:解答题

20.在平面直角坐标系xoy中,已知向量$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),0≤x≤π,且f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值;
(3)求f(x)的单调区间和最值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.若$\overrightarrow{AB}•\overrightarrow{BC}=0$,$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{BC}}|=2$,$\overrightarrow{AD}•\overrightarrow{DC}=0$,则$|{\overrightarrow{BD}}|$的最大值为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案