相关习题
 0  235892  235900  235906  235910  235916  235918  235922  235928  235930  235936  235942  235946  235948  235952  235958  235960  235966  235970  235972  235976  235978  235982  235984  235986  235987  235988  235990  235991  235992  235994  235996  236000  236002  236006  236008  236012  236018  236020  236026  236030  236032  236036  236042  236048  236050  236056  236060  236062  236068  236072  236078  236086  266669 

科目: 来源: 题型:填空题

8.已知偶函数f(x)在区间(-∞,0]单调递减,f(-1)=$\frac{1}{2}$,则满足2f(2x-1)-1<0的取值范围是(0,1).

查看答案和解析>>

科目: 来源: 题型:解答题

7.设f(α)=$\frac{sin(α-\frac{13π}{2})•tan(α-3π)}{cos(α+\frac{9π}{2})•tan(\frac{7π}{2}+α)}$.
(1)化简f(α),并求f(-$\frac{67π}{6}$);
(2)若f(α )=$\frac{2}{5}$,求cosα.

查看答案和解析>>

科目: 来源: 题型:填空题

6.化简:$\sqrt{\frac{1+cosα}{1-cosα}}$+$\sqrt{\frac{1-cosα}{1+cosα}}$(π<α<$\frac{3π}{2}$)=-$\frac{2}{sinα}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数f(x)=ax-1+2的图象恒过定点(  )
A.(3,1)B.(0,2)C.(1,3)D.(0,1)

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)当sinθ=-$\frac{1}{2}$时,求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是单调函数,且θ∈[0,2π),求θ的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同的实数根,则实数a的取值范围是(  )
A.[-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1]B.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知$\frac{{2cos(\frac{3}{2}π+θ)+cos(π+θ)}}{{3sin(π-θ)+2sin(\frac{5}{2}π+θ)}}=\frac{1}{5}$;
(1)求tanθ的值;
(2)求sin2θ+3sinθcosθ的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知命题p:方程x2-2x+m=0有两个不相等的实数根;命题q:对任意x∈[0,8],不等式log${\;}_{\frac{1}{3}}$(x+1)≥m2-3m恒成立.若“p或q”是真命题,“p且q”是假命题,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=x2+sinx+ex•cosx
(1)求该函数的导数f′(x)
(2)求函数f(x)在x=0处的切线方程.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知函数f (x)及其导数f′(x),若存在x0,使得f (x0)=f′(x0),则称x0是f (x)的一个“巧值点”,下列函数中,存在“巧值点”的是①②③⑤.(填上所有正确的序号)
①f (x)=x2
②f(x)=sinx,
③f (x)=lnx,
④f (x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

同步练习册答案