相关习题
 0  235917  235925  235931  235935  235941  235943  235947  235953  235955  235961  235967  235971  235973  235977  235983  235985  235991  235995  235997  236001  236003  236007  236009  236011  236012  236013  236015  236016  236017  236019  236021  236025  236027  236031  236033  236037  236043  236045  236051  236055  236057  236061  236067  236073  236075  236081  236085  236087  236093  236097  236103  236111  266669 

科目: 来源: 题型:填空题

9.函数y=ln(4-x2)+$\sqrt{1-tanx}$的定义域为(-$\frac{π}{2}$,$\frac{π}{4}$]∪($\frac{π}{2}$,2).

查看答案和解析>>

科目: 来源: 题型:选择题

8.给出下列说法:
(1)y=tanx既是奇函数,也是增函数
(2)y=2${\;}^{-{x}^{2}+2x}$的值域为(-∞,2].
(3)若y=f(2x)的定义域为[1,2],则y=f(x-1)的定义域为[3,5].
(4)全集U={(x,y)|x,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},N={(x,y)|y-3=x-2},则(∁UM)∩N={(2,3)}.
(5)方程3sin$\frac{π}{2}x={log_{\frac{1}{2}}}$x有3个实数根.
(6)函数y=lgsin($\frac{π}{3}$-2x)的单调递增区间为(kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$),(k∈Z).
以上正确的说法有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:填空题

7.f(x)=ln|x-2|-m(m∈R)的所有零点之和为4.

查看答案和解析>>

科目: 来源: 题型:填空题

6.给出下列命题:
①在△ABC若A<B,则sinA<sinB;
②函数f(x)=$\sqrt{1-sinx}$+$\sqrt{sinx-1}$既是奇函数又是偶函数;
③函数y=|tan(2x-$\frac{π}{3}$)|的周期是$\frac{π}{2}$;
④在同一坐标系中,函数y=sinx的图象与函数y=-lnx+1的图象有三个公共点.
其中正确的个数是①③④.(填出所有正确命题的序号).

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的一段图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)在(-2π,2π)上的单调递减区间.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在△ABC中,内角A,B,C所对的边分别为a,b,c,$\sqrt{3}$sinB-cosB=1,a=2.
(1)求角B的大小;
(2)若b2=ac,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

3.北京某旅行社为某旅行团包机去旅游,期中旅行社的包机费为12000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行社的人数在30人或30人以下,则每张机票收费800元;若旅行社的人数多于30人,则给予优惠,每多一张,旅行社每张机票减少20元,但旅行社的人数最多不超过45人.
(1)写出旅行社获得的机票利润y(元)与旅行团的人数x(人)之间的函数关系式;
(2)求出当机票利润最大时旅行社的人数,并求出最大利润.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设焦点在x轴上的椭圆$\frac{x^2}{4}+\frac{y^2}{k}=1$的离心率为e,且$e∈(\frac{1}{2},1)$,则实数k的取值范围是(  )
A.(0,3)B.$(3,\frac{16}{3})$C.$(0,3)∪(3,\frac{16}{3})$D.(0,2)

查看答案和解析>>

科目: 来源: 题型:选择题

1.从-3,-2,-1,1,2,3中任取三个不同的数作为椭圆方程ax2+by2+c=0中的系数,则确定不同椭圆的个数为(  )
A.20B.18C.9D.16

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知△ABC和△EBC是边长为2的正三角形,平面EBC⊥平 面ABC,AD⊥平面ABC,且$AD=2\sqrt{3}$.
(Ι)证明:AD∥平面EBC;
(II)求三棱锥E-ABD的体积.

查看答案和解析>>

同步练习册答案