相关习题
 0  235924  235932  235938  235942  235948  235950  235954  235960  235962  235968  235974  235978  235980  235984  235990  235992  235998  236002  236004  236008  236010  236014  236016  236018  236019  236020  236022  236023  236024  236026  236028  236032  236034  236038  236040  236044  236050  236052  236058  236062  236064  236068  236074  236080  236082  236088  236092  236094  236100  236104  236110  236118  266669 

科目: 来源: 题型:选择题

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sinα+cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知四棱锥A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求四棱锥A-BCDE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一个焦点与抛物线y2=4x的焦点相同,F1,F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为1.
(1)求椭圆C的方程;
(2)直线l:y=kx+m(m≠0)交椭圆C于A,B两点.
①若x轴上任意一点到直线AF2与BF2距离相等,求证:直线l过定点,并求出该定点的坐标;
若直线l的斜率是直线OA,OB斜率的等比中项,求△AOB面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知向量$\overrightarrow a=(3,2),\overrightarrow b=(x,1-y)$且$\overrightarrow a∥\overrightarrow b$,若x,y均为正数,则$\frac{3}{x}+\frac{2}{y}$的最小值是(  )
A.24B.8C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.抛物线:y=x2的焦点坐标是(  )
A.$({0\;\;,\;\;\frac{1}{2}})$B.$({0\;\;,\;\;\frac{1}{4}})$C.$({\frac{1}{2}\;\;,\;\;0})$D.$({\frac{1}{4}\;\;,\;\;0})$

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知命题p:y=loga(2-ax)在[0,1]上是减函数;命题$q:y=lg(a{x^2}-x+\frac{a}{12})$的值域是R,若命题“p且q”是假命题,“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

13.方程sin4x=sin2x在$(0,\frac{3}{2}π)$上的解集是$\left\{{\frac{π}{6},\frac{π}{2},π,\frac{5π}{6},\frac{7π}{6}}\right\}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知A={x|a1x2+b1x+c1>0(a1,b1,c1∈R,a1b1c1≠0)},B={x|a2x2+b2x+c2>0(a2,b2,c2∈R,a2b2c2≠0)},则A=B是$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$成立的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是平行四边形,BA=BD=$\sqrt{2}$,AD=2,PA=PD=$\sqrt{5}$,E,F分别是棱AD,PC的中点.
(Ⅰ)证明 AD⊥平面PBE;
(Ⅱ)若二面角P-AD-B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的半焦距为c,若直线y=2x与椭圆的一个交点的横坐标恰好为c,则椭圆的离心率为(  )
A.$1-\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

同步练习册答案