相关习题
 0  235932  235940  235946  235950  235956  235958  235962  235968  235970  235976  235982  235986  235988  235992  235998  236000  236006  236010  236012  236016  236018  236022  236024  236026  236027  236028  236030  236031  236032  236034  236036  236040  236042  236046  236048  236052  236058  236060  236066  236070  236072  236076  236082  236088  236090  236096  236100  236102  236108  236112  236118  236126  266669 

科目: 来源: 题型:选择题

19.i表示虚数单位,则复数$\frac{i}{(1-i)^{2}}$=(  )
A.$\frac{i}{2}$B.-$\frac{i}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.设集合M={x|x2<x},N={x||x|<1},则(  )
A.M∩N=∅B.M∪N=MC.M∩N=MD.M∪N=R

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知△ABC中,角A,B,C所对的边分别是a,b,c,$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{b}$+2$\sqrt{3}$csinA=2b+4c,且14sinC=3$\sqrt{3}$.
(1)求A的大小;
(2)若c=3,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

16.设f(x)=aex+blnx,且f′(1)=e,f′(-1)=$\frac{1}{e}$,则a+b=1.

查看答案和解析>>

科目: 来源: 题型:填空题

15.等差数列{an}中,S3=$\frac{3}{5}$,S5=$\frac{5}{3}$,则S8=$\frac{64}{15}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,正方体ABCD-A1B1C1D1中,E、F,M分别是AB,AM,AA1的中点,P,Q分别是A1B1,A1D1上的动点(不与A1重合),且A1P=A1Q.
(1)求证:EF∥平面MPQ;
(2)当平面MPQ与平面EFM所成二面角为直二面角时,求二面角E-MP-F的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,点D是椭圆C上一动点当△DF1F2的面积取得最大值1时,△DF1F2为直角三角形.
(1)椭圆C的方程.
(2)已知点P是椭圆C上的一点,则过点P(x0,y0)的切线的方程为$\frac{x{x}_{0}}{{a}^{2}}$+$\frac{y{y}_{0}}{{b}^{2}}$=1.过直线l:x=2上的任意点M引椭圆C的两条切线,切点分别为A,B,求证:直线AB恒过定点.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设等差数列{an}的前n项和为Sn,a22=37,S22=352.
(1)求数列{an}的通项公式;
(2)若bn=an•2${\;}^{{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在多面体A1C1D1-ABCD中,平面A1C1D1∥平面ABCD,AA1∥DD1∥CC1,AA1⊥平面ABCD,四边形为矩形,AD=1,DC=2,DD1=3.
(1)已知$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}{C}_{1}}$,且DE⊥A1C1,求实数λ的值;
(2)已知H是平面A1BC1内的点,求DH的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,四边形ABCD中,AD∥BC,∠DAC=45°,∠ADC=60°,DC=$\sqrt{6}$,AB=3$\sqrt{2}$.
(1)求AC的长;
(2)求∠ABC的大小.

查看答案和解析>>

同步练习册答案