相关习题
 0  235936  235944  235950  235954  235960  235962  235966  235972  235974  235980  235986  235990  235992  235996  236002  236004  236010  236014  236016  236020  236022  236026  236028  236030  236031  236032  236034  236035  236036  236038  236040  236044  236046  236050  236052  236056  236062  236064  236070  236074  236076  236080  236086  236092  236094  236100  236104  236106  236112  236116  236122  236130  266669 

科目: 来源: 题型:解答题

7.盒中装有数字1,2,3,4,5的小球各取2个,从袋中一次性任取3个小球,每个小球被取出的可能性都相等.
(1)求取出的3个小球上的数字互不相同的概率;
(2)用ξ表示取出的三个小球上的最小数字,求随机变量ξ的概率分布和数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

6.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,且(2$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=0,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在三棱锥S-ABC中,底面ABC为直角三角形,且∠ABC=90°,SA⊥底面ABC,且SA=AB,点M是SB的中点,AN⊥SC且交SC于点N.
(1)求证:SC⊥平面AMN;
(2)当AB=BC时,求二面角N-MA-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆Γ:$\frac{{x}^{2}}{4}$+y2=1的左顶点为R,点A(2,1),B(-2,1),O为坐标原点.
(I)若P是椭圆Γ上任意一点,$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,求m2+n2的值;
(II)设Q是椭圆Γ上任意一点,S(6,0),求$\overrightarrow{QS}$•$\overrightarrow{QR}$的取值范围;
(Ⅲ)设M(x1,y1),N(x2,y2)是椭圆Γ上的两个动点,满足kOM•kON=kOA•kOB,试探究△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

3.比较大小:cos(-508°)<cos(-144°).( 填>,<或=)

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点A(0,-b)和B(a,0)的直线与原点的距离为$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程.
(2)已知定点E(-1,0),是否存在k的值,使得直线y=kx+2(k≠0)与椭圆交于C、D两点.且EC⊥ED,并说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

1.F1、F2分别是椭圆x2+2y2=1的左、右焦点,点P在椭圆上,线段PF2与y轴的交点为M,且$\overrightarrow{{F}_{1}M}$=$\frac{1}{2}$($\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{1}P}$),则点M到坐标原点O的距离是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,∠B的平分线BN所在直线方程为x-2y-5=0.求:
(1)顶点B的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知指数函数y=g(x)的图象经过点(2,4),且定义域为R的函数f(x)=$\frac{b-g(x)}{a+g(x)}$是奇函数.
(1)求f(x)的解析式,判断f(x)在定义域R上的单调性,并给予证明;
(2)若关于x的方程f(x)=m在[-1,0)上有解,求f($\frac{1}{m}$)的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC,AB=$\frac{1}{2}$DE,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

同步练习册答案