相关习题
 0  235946  235954  235960  235964  235970  235972  235976  235982  235984  235990  235996  236000  236002  236006  236012  236014  236020  236024  236026  236030  236032  236036  236038  236040  236041  236042  236044  236045  236046  236048  236050  236054  236056  236060  236062  236066  236072  236074  236080  236084  236086  236090  236096  236102  236104  236110  236114  236116  236122  236126  236132  236140  266669 

科目: 来源: 题型:解答题

7.已知向量$\overrightarrow m=({sinx,1}),\overrightarrow{\;n}=({\sqrt{3}Acosx,\frac{A}{2}cos2x})({A>0})$,函数$f(x)=\overrightarrow m•\overrightarrow n$的最大值为6.
(1)求A的值及函数图象的对称轴方程和对称中心坐标;
(2)将函数y=f(x)的图象向左平移$\frac{π}{12}$个单位,再将所得的图象上各点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在$[{0,\frac{5π}{24}}]$上的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知A、B为抛物线y2=2px(p>0)上不同的两个动点(A、B都不与原点重合),且OA⊥OB,OM⊥AB于M.
(Ⅰ)当点M的轨迹经过点(2,1)时,求p的值;
(Ⅱ)在(Ⅰ)的条件下,求点M的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知P(2,1)是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1内一点,椭圆的离心率为$\frac{1}{3}$,则椭圆以P为中点的弦所在直线方程是16x+9y-41=0..

查看答案和解析>>

科目: 来源: 题型:选择题

4.某班级共49人,在必修1的学分考试中,有7人没通过,若用A表示参加补考这一事件,则下列关于事件A的说法正确的是(  )
A.概率为$\frac{1}{7}$B.频率为$\frac{1}{7}$C.频率为7D.概率接近$\frac{1}{7}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知集合A={x|a-1<x<2a+1},B={x|0<x<3}.
(1)若a=2,求A∪B;
(2)若A⊆B,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,若关于x的函数F(x)=f(x)-a有5个零点,则实数a的取值范围是(-1,1).

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知f(x)=1n(1+x)-$\frac{x(x+a)}{a(x+1)}$(a>1).
(1)讨论函数f(x)的单调性;
(2)证明:(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{3}^{2}}$)(1+$\frac{1}{{4}^{2}}$)…(1+$\frac{1}{{n}^{2}}$)<e${\;}^{\frac{3}{4}}$(n∈N*,n≥2).

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知数列{an},a1=2,点$({\frac{1}{2}{a_n},{a_{n+1}}+1})$在函数f(x)=2x+3的图象上.
(1)求数列{an}的通项公式;
(2)若数列${b_n}={2^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

19.椭圆E:$\frac{x^2}{4}+\frac{y^2}{3}=1$的右顶点为B,过E的右焦点作斜率为1的直线L与E交于M,N两点,则△MBN的面积为$\frac{6\sqrt{2}}{7}$,.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知三角形ABC的面积$s=\frac{{{a^2}+{b^2}-{c^2}}}{4}$,则∠C的大小是$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案