相关习题
 0  235976  235984  235990  235994  236000  236002  236006  236012  236014  236020  236026  236030  236032  236036  236042  236044  236050  236054  236056  236060  236062  236066  236068  236070  236071  236072  236074  236075  236076  236078  236080  236084  236086  236090  236092  236096  236102  236104  236110  236114  236116  236120  236126  236132  236134  236140  236144  236146  236152  236156  236162  236170  266669 

科目: 来源: 题型:选择题

17.下列函数中与函数y=x0表示同一函数的是(  )
A.y=1B.y=$\frac{(\sqrt{x})^{2}}{x}$C.y=$\frac{x}{x}$D.y=$\frac{|x|+1}{|x|+1}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$,以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)+$\sqrt{2}$=0.
(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)求曲线C1上的点到曲线C2的距离的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知直线L经过点P($\frac{1}{2}$,1),倾斜角$α=\frac{π}{6}$,在极坐标系下,圆C的极坐标方程为$ρ=\sqrt{2}cos({θ-\frac{π}{4}})$.
(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;
(2)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在平面直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}x=5cosα\\ y=sinα\end{array}\right.$(α为参数),点P的坐标为$(3\sqrt{2},0)$.
(1)试判断曲线C的形状为何种圆锥曲线;
(2)已知直线l过点P且与曲线C交于A,B两点,若直线l的倾斜角为45°,求|PA|•|PB|的值.

查看答案和解析>>

科目: 来源: 题型:选择题

13.数列{an}的前n项和为Sn,若a1=-1,an=3Sn(n>1),则S10=(  )
A.$-\frac{1}{512}$B.-$\frac{341}{512}$C.$\frac{1}{1024}$D.$\frac{1}{2048}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知圆C1:x2+y2+4x-4y-3=0,点P为圆C2:x2+y2-4x-12=0上且不在直线C1C2上的任意一点,则△PC1C2的面积的最大值为(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.$8\sqrt{5}$D.20

查看答案和解析>>

科目: 来源: 题型:选择题

11.函数$f(x)={log_5}({6^x}+1)$的值域为(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

10.函数y=2sin($\frac{π}{6}$-2x),(x∈[0,π])为增函数的区间是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{12}$,$\frac{7π}{12}$]C.[$\frac{π}{3}$,$\frac{5π}{6}$]D.[$\frac{5π}{6}$,π]

查看答案和解析>>

科目: 来源: 题型:选择题

9.下列命题中正确的是(  )
A.命题“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0”
B.命题“若cosx=cosy,则x=y”的逆否命题是真命题:
C.命题“存在四边相等的四边形不是正方形”是假命题
D.命题”若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”

查看答案和解析>>

科目: 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,$3sinAcosB+\frac{1}{2}bsin2A=3sinC$,且$A≠\frac{π}{2}$
(1)求a的值;       
(2)若$A=\frac{2π}{3}$,求△ABC周长的最大值.

查看答案和解析>>

同步练习册答案