相关习题
 0  235995  236003  236009  236013  236019  236021  236025  236031  236033  236039  236045  236049  236051  236055  236061  236063  236069  236073  236075  236079  236081  236085  236087  236089  236090  236091  236093  236094  236095  236097  236099  236103  236105  236109  236111  236115  236121  236123  236129  236133  236135  236139  236145  236151  236153  236159  236163  236165  236171  236175  236181  236189  266669 

科目: 来源: 题型:选择题

7.计算cos$\frac{π}{8}$•cos$\frac{5π}{8}$的结果等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知sinα+cosα=$\frac{2}{3}$,则sin2α的值为(  )
A.$\frac{5}{9}$B.±$\frac{5}{9}$C.-$\frac{5}{9}$D.0

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,在平行四边形ABCD中,$\overrightarrow{AC}$=(3,2),$\overrightarrow{BD}$=(-1,2),则$\overrightarrow{AC}$•$\overrightarrow{AD}$等于(  )
A.1B.6C.-7D.7

查看答案和解析>>

科目: 来源: 题型:选择题

4.若平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,$\overrightarrow{a}$=($\frac{3}{5}$,-$\frac{4}{5}$),|$\overrightarrow{b}$|=2,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

查看答案和解析>>

科目: 来源: 题型:选择题

3.设平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$-2$\overrightarrow{b}$等于(  )
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

查看答案和解析>>

科目: 来源: 题型:选择题

2.为了得到周期y=sin(2x+$\frac{π}{6}$)的图象,只需把函数y=sin(2x-$\frac{π}{3}$)的图象(  )
A.向左平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{4}$个单位长度
C.向左平移$\frac{π}{2}$个单位长度D.向右平移$\frac{π}{2}$个单位长度

查看答案和解析>>

科目: 来源: 题型:选择题

1.函数f(x)=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{3}$)(x∈R)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知$\frac{sinα-2cosα}{3sinα+5cosα}$=2,则tanα的值为(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.cos$\frac{5π}{3}$等于(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.阅读下面材料,尝试类比探究函数y=x2-$\frac{1}{{x}^{2}}$的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.
阅读材料:
我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.
在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.
对于函数y=$\frac{1}{x}$,我们可以通过表达式来研究它的图象和性质,如:
(1)在函数y=$\frac{1}{x}$中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.
(2)在函数y=$\frac{1}{x}$中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;
(3)在函数y=$\frac{1}{x}$中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(-∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;
(4)由函数y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函数,可以推测出,对应的图象关于原点对称.
结合以上性质,逐步才想出函数y=$\frac{1}{x}$对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.

查看答案和解析>>

同步练习册答案