相关习题
 0  236001  236009  236015  236019  236025  236027  236031  236037  236039  236045  236051  236055  236057  236061  236067  236069  236075  236079  236081  236085  236087  236091  236093  236095  236096  236097  236099  236100  236101  236103  236105  236109  236111  236115  236117  236121  236127  236129  236135  236139  236141  236145  236151  236157  236159  236165  236169  236171  236177  236181  236187  236195  266669 

科目: 来源: 题型:选择题

14.已知圆M:x2+y2-2x+ay=0(a>0)被x轴和y轴截得的弦长相等,则圆M被直线x+y=0截得的弦长为(  )
A.4B.$\sqrt{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目: 来源: 题型:填空题

13.若tanθ=$\frac{4}{3}$,sinθ<0,则cosθ=-$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知f(α)=$\frac{sin(\frac{3π}{2}+α)cos(2π-a)tan(π+α)}{cos(-\frac{π}{2}-α)}$,则f(-$\frac{31π}{3}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=AC=2A1C1=2,D为BC中点.
(Ⅰ)证明:平面A1AD⊥平面BCC1B1
(Ⅱ)求直线BB1与面AA1CC1所成角
(Ⅲ)求二面角A-CC1-B的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等腰直角三角形.SA=SB=2,AB=2DC,SD=1,BC=$\sqrt{3}$.
(1)证明:SD⊥平面SAB.
(2)求四棱锥S-ABCD的表面积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示的多面体中,已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,AD⊥DC,AB∥DC,AB=AD=DE=4,CD=8.
(1)证明:BD⊥平面BCF;
(2)设二面角E-BC-F的平面角为θ,求cosθ的值.

查看答案和解析>>

科目: 来源: 题型:选择题

8.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.若直线y=bx+c过圆C:x2+y2-2x-2y=1的圆心,则△ABC面积的最大值为(  )
A.$\frac{\sqrt{2}}{6}$B.$\frac{\sqrt{3}}{16}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知斜率为1的直线l过椭圆$\frac{y{\;}^{2}}{8}$+$\frac{x{\;}^{2}}{4}$=1的下焦点,交椭圆于A、B两点,求AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(1)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置,并求直线DE到平面AB1C1的距离;如果不存在,请说明理由;
(2)求截面DEG与底面ABC所成锐二面角的正切值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若x>0,y>0且2x+y=3,则$\frac{1}{x}+\frac{1}{y}$的最小值是$\frac{1}{3}(3+2\sqrt{2})$.

查看答案和解析>>

同步练习册答案