相关习题
 0  236017  236025  236031  236035  236041  236043  236047  236053  236055  236061  236067  236071  236073  236077  236083  236085  236091  236095  236097  236101  236103  236107  236109  236111  236112  236113  236115  236116  236117  236119  236121  236125  236127  236131  236133  236137  236143  236145  236151  236155  236157  236161  236167  236173  236175  236181  236185  236187  236193  236197  236203  236211  266669 

科目: 来源: 题型:选择题

14.①?x∈R,x≤0;②至少有一个整数,它既不是合数,也不是素数;③?x∈∁RQ,x2∈∁RQ,以上三个命题,真命题的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=mx-$\frac{m-1+2e}{x}$-lnx,m∈R函数g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上为增函数,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)求θ的值;
(Ⅱ)当m=0时,求函数f(x)的单调区间和极值;
(Ⅲ)若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=ln(x+1)+$\frac{ax}{x+1}$(a∈R)
(1)当a=1时,求f(x)在x=0处的切线方程;
(2)当a<0时,求f(x)的极值;
(3)求证:ln(n+1)>$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{n}^{2}}$(n∈N+

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=lnx-kx+1.
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({n∈{N_+},n>1})$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知抛物线C:y2=kx(k>0)的焦点为F,点N为抛物线上的动点,点$M({1,\sqrt{2}})$不在抛物线上.
(1)若k=4,求|MN|+|NF|的最小值;
(2)设p:2k2-11k+5<0,q:线段MF与抛物线C有公共点,若p∧q是真命题,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知P(x,y)为平面区域$\left\{\begin{array}{l}x-y≥0\\ x+y≥0\\ a≤x≤a+1(a>0)\end{array}\right.$内的任意一点,当该区域的面积为3时,z=2x-y的最大值是(  )
A.6B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,$\sqrt{2}$),且离心率等于$\frac{{\sqrt{3}}}{2}$,过点M(0,2)的直线l与椭圆相交于不同两点P,Q,点N在线段PQ上.
(1)求椭圆的标准方程;
(2)设$\frac{{|\overrightarrow{PM}|}}{{|\overrightarrow{PN}|}}=\frac{{|\overrightarrow{MQ}|}}{{|\overrightarrow{NQ}|}}=λ$,若直线l与y轴不重合,试求λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD
(2)若PA=1,求点A到平面PFD的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

6.甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82  81  79  78  95  88  93  84    乙:92  95  80  75  83  80  90  85
(1)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(2)从甲已抽取的8次预赛中随机抽取两次成绩,求这两次成绩中至少有一次高于90的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c,已知a+b=5,c=$\sqrt{7}$,且4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$
(1)求角C的大小;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案