相关习题
 0  236048  236056  236062  236066  236072  236074  236078  236084  236086  236092  236098  236102  236104  236108  236114  236116  236122  236126  236128  236132  236134  236138  236140  236142  236143  236144  236146  236147  236148  236150  236152  236156  236158  236162  236164  236168  236174  236176  236182  236186  236188  236192  236198  236204  236206  236212  236216  236218  236224  236228  236234  236242  266669 

科目: 来源: 题型:选择题

5.设a∈R,则“a=2或a=-2”是“直线l1:x+ay+3=0与直线l2:ax+4y+6=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

4.给出下列四个命题:
①命题“?x∈R,都有x2-x+1≥$\frac{3}{4}$”的否定是“?x∈R,使x2-x+1<$\frac{3}{4}$”
②命题“设向量$\overrightarrow{a}$=(4sinα,3),$\overrightarrow{b}$=(2,3cosα),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则α=$\frac{π}{4}$的逆命题、否命题、逆否命题中真命题的个数为2;
③集合A={x|x2-x=0},B={y|y=-lg(sinx)},C={y|y=$\sqrt{1-{t}^{2}}$}则x∈A是x∈B∩C的充分不必要条件. 
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m,n>0)的离心率为3,有一个焦点与抛物线$y=\frac{1}{12}{x^2}$的焦点相同,那么双曲线的渐近线方程为(  )
A.2$\sqrt{2}$x±y=0B.x±2$\sqrt{2}$y=0C.x±2y=0D.2x±y=0

查看答案和解析>>

科目: 来源: 题型:解答题

2.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
50.5~60.560.08
60.5~70.512      0.16
70.5~80.5150.2              
80.5~90.5240.32
90.5~100.5180.24
合计751
(Ⅰ)填充频率分布表的空格(将答案直接填在答题卡的表格内);
(Ⅱ)补全频率分布直方图;
(Ⅲ)若成绩在80.5~90.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,右焦点为($\sqrt{3}$,0).
(1)求椭圆C的方程;
(2)过原点O作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值;
(3)在(2)的条件下,求△OAB的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=4,AD=2$\sqrt{2}$,CD=2,PA⊥平面ABCD,PA=4.
(1)求证:BD⊥平面PAC;
(2)异面直线PD与AC所成的角.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知数列{an}是等差数列,其前n项和为Sn,且满足a1+a5=12,S4=20;数列{bn}满足:b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

18.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{(a+b)^{2}-{c}^{2}}{ab}$=1.
(Ⅰ)求∠C;
(Ⅱ)若c=$\sqrt{3}$,b=$\sqrt{2}$,求∠B及△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow{b}$=(2,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)与($\overrightarrow{b}$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

16.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A、B两点,若A到抛物线的准线的距离为5,则|AB|=$\frac{25}{4}$.

查看答案和解析>>

同步练习册答案