相关习题
 0  236061  236069  236075  236079  236085  236087  236091  236097  236099  236105  236111  236115  236117  236121  236127  236129  236135  236139  236141  236145  236147  236151  236153  236155  236156  236157  236159  236160  236161  236163  236165  236169  236171  236175  236177  236181  236187  236189  236195  236199  236201  236205  236211  236217  236219  236225  236229  236231  236237  236241  236247  236255  266669 

科目: 来源: 题型:解答题

2.已知$F(-\sqrt{3},0)$,${F_2}(\sqrt{3},0)$,动点p满足|PF1|+|PF2|=4.
(1)求动点P的轨迹C的标准方程:
(2)不垂直于坐标轴的直线,与曲线C交于A、B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点$Q(0,-\frac{3}{2})$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

1..设数列{an}满足a2+a4=12,点pn(n,an)对任意的n∈N+,都有$\overline{{p_n}{p_{n+1}}}=(1,2)•$
(1)求数列{an}的通项公式an
(2)若数列{bn}满足an=log2(bn+2),求数列$\{\frac{4^n}{{{b_n}{b_{n+1}}}}\}$的前n项和Tn,并证明$\frac{1}{7}≤{T_n}<\frac{1}{6}•$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知抛物线C:y2=2px(0<p<4)的焦点为F,点P为C上一动点,A(4,0),B(p,$\sqrt{2}$p),且|PA|的最小值为$\sqrt{15}$,则|BF|等于(  )
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.一个建筑物CD垂直于水平面,一个人在建筑物的正西A点,测得建筑物顶端的仰角是α,这个人再从A点向南走到B点,再测得建筑物顶端仰角是β,设A、B两地距离为a,求建筑物的高h的值(A,B,C三点在同一水平面内).

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{|lgx|,0<x≤10}\\{-x+11,x>10}\end{array}}$若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,10)B.(5,6)C.(10,11)D.(20,22)

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知函数f(x)的定义域为R,且f(x)>1-f′(x),f(0)=4,则不等式f(x)>1+eln3-x的解集为(  )
A.(0,+∞)B.$({\frac{1}{2},+∞})$C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=ax3+bx+c在x=2处取得极值为c-16.
(1)求a、b的值;
(2)若c=12,求f(x)在[-3,3]上的最大及最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知二次函数f(x)=ax2+bx,若f(x+1)为偶函数,且方程f(x)=x有且只有一个实数根.求函数f(x)的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在四面体ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,P,Q分别是线段AB与CD的中点.
(Ⅰ)求证:PQ⊥CD;
(Ⅱ)若DC=BC,线段BD上是否存在点E,使得平面PQE与平面ABC所成的为二面角为直二面角?若存在,确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知圆C经过三点O(0,0),A(1,3),B(4,0).
(Ⅰ)求圆C的方程;
(Ⅱ)求过点P(3,6)且被圆C截得弦长为4的直线的方程.

查看答案和解析>>

同步练习册答案