相关习题
 0  236085  236093  236099  236103  236109  236111  236115  236121  236123  236129  236135  236139  236141  236145  236151  236153  236159  236163  236165  236169  236171  236175  236177  236179  236180  236181  236183  236184  236185  236187  236189  236193  236195  236199  236201  236205  236211  236213  236219  236223  236225  236229  236235  236241  236243  236249  236253  236255  236261  236265  236271  236279  266669 

科目: 来源: 题型:选择题

2.已知函数f(x)的定义域为D,若对于?a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的边长,则称f(x)为“三角形函数”.给出下列四个函数:
①f(x)=lnx(e2≤x≤e3);②f(x)=4-cosx;③$f(x)={x^{\frac{1}{2}}}(1<x<4)$;④$f(x)=\frac{e^x}{{{e^x}+1}}$.
其中为“三角形函数”的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知Rt△ABC,两直角边AB=1,AC=2,D是△ABC内一点,且∠DAB=60°,设$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(λ,μ∈R),则$\frac{λ}{μ}$=(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.设m,n是不同的直线,α,β是不同的平面,下列四个命题为真命题的是(  )
①若m⊥α,n⊥m,则n∥α;       
②若α∥β,n⊥α,m∥β,则n⊥m;
③若m∥α,n⊥β,m⊥n,则α⊥β;
④若m∥α,n⊥β,m∥n,则α⊥β.
A.②③B.③④C.②④D.①④

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤k\end{array}\right.$,若z=3x-y的最大值为3,则实数k的值为(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

18.下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x与相应的生产能耗y的几组对应数据:
x4235
y49m3954
根据上表可得回归方程$\widehaty=9.4x+9.1$,那么表中m的值为(  )
A.27.9B.25.5C.26.9D.26

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知i是虚数单位,若复数z满足(1+i)z=2i,则z的虚部是(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为$4+2\sqrt{3}$,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

15.空间几何体ABCDEF如图所示.已知面ABCD⊥面ADEF,ABCD为梯形,ADEF为正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G为CE的中点.
(Ⅰ)求证:BG∥面ADEF;
(Ⅱ)求证:CB⊥面BDE;
(Ⅲ)求三棱锥E-BDG的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知各项均为正数的数列{an}满足a1=1,$a_n^2-(2{a_{n+1}}-1){a_n}-2{a_{n+1}}=0$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列${b_n}=a_n^{\;}•{log_2}{a_n}$,求数列{bn}前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

13.为监测全市小学生身体形态生理机能的指标情况,体检中心从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据分成如下5个组:[100,110),[110,120),…,[140,150),并绘制成频率分布直方图(如图所示).
(Ⅰ)若该校共有学生1000名,试估计身高在[100,130)之间的人数;
(Ⅱ)在抽取的100名学生中,按分层抽样的方法从身高为:[100,110),[130,140),[140,150)3个组的学生中选取7人参加一项身体机能测试活动,并从这7人中任意抽取2人进行定期跟踪测试,求这2人取自不同组的概率.

查看答案和解析>>

同步练习册答案