相关习题
 0  236122  236130  236136  236140  236146  236148  236152  236158  236160  236166  236172  236176  236178  236182  236188  236190  236196  236200  236202  236206  236208  236212  236214  236216  236217  236218  236220  236221  236222  236224  236226  236230  236232  236236  236238  236242  236248  236250  236256  236260  236262  236266  236272  236278  236280  236286  236290  236292  236298  236302  236308  236316  266669 

科目: 来源: 题型:解答题

9.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函数.
(1)求a,b的值;
(2)试判断函数f(x)的单调性,并用函数单调性的定义说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.计算下列各式:
(1)${0.001^{-\frac{1}{3}}}-{(\frac{7}{8})^0}+{16^{\frac{3}{4}}}+{(\sqrt{2}•\root{3}{3})^6}$
(2)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4-{7^{{{log}_7}2}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知f(x)=loga(8-3ax)在[-1,2]上单调减函数,则实数a的取值范围为1<a<$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.偶函数y=f(x)满足下列条件①x≥0时,f(x)=x;对任意x∈[t,t+1],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是(  )
A.$[-2,\frac{3}{4}]$B.$(-∞,-\frac{3}{4}]$C.$[-\frac{3}{4},0]$D.$[-\frac{4}{3},1]$

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数f(x)=(m2-m-1)x4m+3是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,若a,b∈R,且a+b>0,ab<0.则f(a)+f(b)的值(  )
A.恒大于0B.恒小于0C.等于0D.无法判断

查看答案和解析>>

科目: 来源: 题型:选择题

4.设集合A={x|1≤x≤2},B={x|x≤a},若A⊆B,则a的取值范围是(  )
A.{a|a≥2}B.{a|a>2}C.{a|a≥1}D.{a|a≤2}

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5
(1)求{an}的通项公式
(2)求数列{(2-an)2n} 的前n项和.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知直线l1:(m+2)x+(m+3)y-5=0和l2:6x+(2m-1)y-5=0,问实数m为何值时,分别有:
(1)l1与l2相交?(2)l1∥l2?(3)l1与l2重合?

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知$\overrightarrow a$与$\overrightarrow b$所成的角为$\frac{5}{6}π$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,求$|3\overrightarrow a+2\overrightarrow b|$,并求$3\overrightarrow a+2\overrightarrow b$与$\overrightarrow a$的夹角.

查看答案和解析>>

科目: 来源: 题型:选择题

20.记$min\{x,y\}=\left\{\begin{array}{l}y{,_{\;}}x≥y\\ x{,_{\;}}x<y\end{array}\right.$,设a,b为平面内的非零向量,则(  )
A.$min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≤min\{|\overrightarrow a|,|\overrightarrow b|\}$B.$min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≥{\overrightarrow a^2}+{\overrightarrow b^2}$
C.$min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≥min\{|\overrightarrow a|,|\overrightarrow b|\}$D.$min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≤{\overrightarrow a^2}+{\overrightarrow b^2}$

查看答案和解析>>

同步练习册答案