相关习题
 0  236131  236139  236145  236149  236155  236157  236161  236167  236169  236175  236181  236185  236187  236191  236197  236199  236205  236209  236211  236215  236217  236221  236223  236225  236226  236227  236229  236230  236231  236233  236235  236239  236241  236245  236247  236251  236257  236259  236265  236269  236271  236275  236281  236287  236289  236295  236299  236301  236307  236311  236317  236325  266669 

科目: 来源: 题型:解答题

19.函数f(x)=x3+ax2-a2x+3,a∈R
(1)若a<0,求函数f(x)的单调减区间;
(2)若关于x的不等式2xlnx≤f'(x)+a2+1恒成立,求实数a的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.抛物线C:y2=2px(p>0)的焦点为F,A为C上的一点,已知|AF|=3,直线OA的斜率为$\sqrt{2}$(O为坐标原点).
(1)求抛物线C的方程;
(2)过焦点F作两条互相垂直的直线l1、l2,设l1与C交于B、D两点,l2与C交于C、E两点,求四边形BCDE面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,直三棱柱(侧棱垂直于底面)ABC-A1B1C1中,$CA=CB=\frac{1}{2}C{C_1}$,点D棱AA1的中点,且C1D⊥BD.
(1)求证:CA⊥CB;
(2)若CA=1,求四棱锥C1-A1B1BD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

16.等差数列{an}中,Sn为其前n项和,已知a3+a6=16,S9-S4=65.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{a_n}}$,求数列{bn}的前n项和Tn的表达式.

查看答案和解析>>

科目: 来源: 题型:填空题

15.设函数$f(x)=ax-\frac{b}{x}$,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,则a+b=4.

查看答案和解析>>

科目: 来源: 题型:选择题

14.三棱锥S-ABC中,底面ABC为等腰直角三角形,BA=BC=2,侧棱$SA=SC=2\sqrt{3}$,$SB=2\sqrt{2}$,则此三棱锥外接球的表面积为(  )
A.16πB.12πC.D.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数f(x)=sinx+cosx,$g(x)=\sqrt{2}sin2x$,则下列结论正确的是(  )
A.把函数f(x)图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度,可得到函数g(x)的图象
B.两个函数的图象均关于直线$x=-\frac{π}{4}$对称
C.两个函数在区间$(-\frac{π}{4},\frac{π}{4})$上都是单调递增函数
D.函数y=g(x)在[0,2π]上只有4个零点

查看答案和解析>>

科目: 来源: 题型:选择题

12.在△ABC中,角A、B、C的对边分别为a、b、c,$\overrightarrow m=(b,c-a),\overrightarrow n=(b-c,c+a)$,若$\overrightarrow m⊥\overrightarrow n,a=3$,
则$\frac{c}{sinC}$的值为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.6

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为10,点P(2,1)在其渐近线上,则该双曲线的方程为(  )
A.$\frac{x^2}{80}-\frac{y^2}{20}=1$B.$\frac{x^2}{20}-\frac{y^2}{80}=1$C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+6x+3,(x≤0)}\\{-3x+3,(0<x<1)}\\{-{x}^{2}+4x-3,(x≥1)}\end{array}\right.$
(1)画出函数的图象 (2)根据图象写出f(x)单调区间
(3)利用单调性定义证明f(x)在(-∞,-3]上减少的.

查看答案和解析>>

同步练习册答案