相关习题
 0  236148  236156  236162  236166  236172  236174  236178  236184  236186  236192  236198  236202  236204  236208  236214  236216  236222  236226  236228  236232  236234  236238  236240  236242  236243  236244  236246  236247  236248  236250  236252  236256  236258  236262  236264  236268  236274  236276  236282  236286  236288  236292  236298  236304  236306  236312  236316  236318  236324  236328  236334  236342  266669 

科目: 来源: 题型:解答题

10.关于x的不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$(其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,试确定k的取值范围;
(2)若k>1时,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目: 来源: 题型:选择题

9.若函数f(x)=lnx+ax2-2在区间($\frac{1}{2}$,2)内存在单调递增区间,则实数a的取值范围是(  )
A.(-∞,-2]B.(-$\frac{1}{8}$,+∞)C.(-2,-$\frac{1}{8}$)D.(-2,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1,F2,点F2到直线x+$\sqrt{3}$y=0的距离为$\frac{1}{2}$,若点P在椭圆E上,△F1PF2的周长为6.
(1)求椭圆E的方程;
(2)若过F1的直线l与椭圆E交于不同的两点M,N,求△F2MN的内切圆的半径的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若f(x)=5cosx,则f′($\frac{π}{2}$)=-5.

查看答案和解析>>

科目: 来源: 题型:填空题

6.椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦点为F1、F2,P为椭圆上的一点,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则$|{\overrightarrow{P{F_1}}}|•|{\overrightarrow{P{F_2}}}|$=8.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知两个单位向量$\overrightarrow i$,$\overrightarrow j$互相垂直,且向量$\overrightarrow k=2\overrightarrow i-4\overrightarrow j$,则$|\overrightarrow k+\overrightarrow i|$=5.

查看答案和解析>>

科目: 来源: 题型:选择题

4.设函数f(x)是周期为2的偶函数,当0≤x≤1时,f(x)=2x(1-x),则f(-$\frac{5}{2}$)=(  )
A.-$\frac{35}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知直线l1:x+my+6=0和直线l2:(m-2)x+3y+2m=0,试分别求实数m的值.
(1)l1⊥l2
(2)l1∥l2
(3)l1与l2重合;
(4)相交.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知集合A={x∈Z|-1≤x≤2},B={y|y=2x},则A∩B=(  )
A.B.[0,2]C.(0,2]D.{1,2}

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知直线y=-x+1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点.且OA⊥OB(其中O为坐标原点).
(1)若椭圆的离心率为$\frac{\sqrt{3}}{3}$,求椭圆的标准方程;
(2)求证:不论a,b如何变化,椭圆恒过定点P;
(3)若直线l:y=ax+m过(2)中的定点P,且椭圆的离心率e∈[$\sqrt{\frac{6}{7}}$,$\sqrt{\frac{16}{17}}$],求原点到直线l距离的取值范围.

查看答案和解析>>

同步练习册答案