相关习题
 0  236214  236222  236228  236232  236238  236240  236244  236250  236252  236258  236264  236268  236270  236274  236280  236282  236288  236292  236294  236298  236300  236304  236306  236308  236309  236310  236312  236313  236314  236316  236318  236322  236324  236328  236330  236334  236340  236342  236348  236352  236354  236358  236364  236370  236372  236378  236382  236384  236390  236394  236400  236408  266669 

科目: 来源: 题型:选择题

4.已知集合U=R,集合A={x|1<2x<4},B={x|x2-1≥0}则A∩(∁UB)=(  )
A.{x|1<x<2}B.{x|0<x<1|}C.{x|1≤x<2}D.{x|0<x≤1}

查看答案和解析>>

科目: 来源: 题型:解答题

3.a为实数,记函数f(x)=2|cosx|+a($\sqrt{1+sinx}$+$\sqrt{1-sinx}$)的最大值为g(a)
(1)设t=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$,求t的取值范围并把f(x)表示为t的表达式;
(2)求函数f(x)的最大值g(a).

查看答案和解析>>

科目: 来源: 题型:解答题

2.某校从参加高二年级期末考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下频率分布表.根据相关信息回答下列问题:
(1)求a,b的值,并画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数在[60,80)内学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人的分数在[70,80)内的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,点A在其右半支上,若$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=0,若∠AF1F2∈(0,$\frac{π}{12}$),则该双曲线的离心率e的取值范围为(1,$\sqrt{2}$).

查看答案和解析>>

科目: 来源: 题型:填空题

20.给出下列不等式:1+$\frac{1}{2}$+$\frac{1}{3}$>1,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{7}$>$\frac{3}{2}$,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{15}$>2…,则按此规律可猜想第n个不等式为1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n+1}-1}$>$\frac{n+1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,3),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$-$\overrightarrow{c}$)⊥$\overrightarrow{b}$,则k=12.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知方程(m2-2m-3)x+(2m2+m-1)y+5-2m=0(m∈R).
(1)求方程表示一条直线的条件;
(2)当m为何值时,方程表示的直线与x轴垂直;
(3)若方程表示的直线在两坐标轴上的截距相等,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知圆O的方程为x2+y2=5.
(1)P是直线y=$\frac{1}{2}$x-5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;
(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.为了解甲、乙两校高二年级学生某次联考物理成绩情况,从这两学校中分别随机抽取30名高二年级的物理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(1)若甲校高二年级每位学生被抽取的概率为0.15,求甲校高二年级学生总人数;
(2)根据茎叶图,对甲、乙两校高二年级学生的物理成绩进行比较,写出两个统计结论(不要求计算);
(3)从样本中甲、乙两校高二年级学生物理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知z为复数,i是虚数单位,z+3+4i和$\frac{z}{1-2i}$均为实数.
(1)求复数z;
(2)若复数(z-mi)2在复平面上对应的点在第二象限,求实数m的取值范围.

查看答案和解析>>

同步练习册答案