相关习题
 0  236242  236250  236256  236260  236266  236268  236272  236278  236280  236286  236292  236296  236298  236302  236308  236310  236316  236320  236322  236326  236328  236332  236334  236336  236337  236338  236340  236341  236342  236344  236346  236350  236352  236356  236358  236362  236368  236370  236376  236380  236382  236386  236392  236398  236400  236406  236410  236412  236418  236422  236428  236436  266669 

科目: 来源: 题型:解答题

1.如图,长方体ABCD-A1B1C1D1中,D1D=DC=4,AD=2,E为D1C的中点.
(1)求三棱锥D1-ADE的体积.
(2)AC边上是否存在一点M,使得D1A∥平面MDE?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x}-a(x<1)}\\{4(x-a)(x-2a)(x≥1)}\end{array}}\right.$.若f(x)=0恰有2个实数根,则实数a的取值范围是$[\frac{1}{2},1)∪[2,+∞)$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.如图,长方体ABCD-A1B1C1D1中,AB=3,BC=4,CC1=5,则沿着长方体表面从A到C1的最短路线长为$\sqrt{74}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2017x+log2017x,则在R上,函数f(x)零点的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后射到直线OB上,再经直线OB反射后射到P点,则光线所经过的路程PM+MN+NP等于(  )
A.$2\sqrt{10}$B.6C.$3\sqrt{3}$D.$2\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:对函数y=-4x2+4(2-m)x-1,y≤0恒成立.若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在长方体ABCD-A1B1C1B1中,AA1=2AB=2AD=4,点E在CC1上且C1E=3EC.利用空间向量解决下列问题:
(1)证明:A1C⊥平面BED;
(2)求锐二面角A1-DE-B 的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<a)的半焦距为c,直线l经过双曲线的右顶点和虚轴的上端点.已知原点到直线l的距离为$\frac{\sqrt{3}}{4}$c,则双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.假设关于某设备使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知y对x呈线性相关关系.
试求:(1)线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计使用年限为10时,维修费用是多少?
(参考公式)$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$,其中$\overline{x}=\frac{1}{n}\sum_{i=1}^n{x_i}$,$\overline{y}=\frac{1}{n}\sum_{i=1}^n{y_i}$.

查看答案和解析>>

同步练习册答案