相关习题
 0  236254  236262  236268  236272  236278  236280  236284  236290  236292  236298  236304  236308  236310  236314  236320  236322  236328  236332  236334  236338  236340  236344  236346  236348  236349  236350  236352  236353  236354  236356  236358  236362  236364  236368  236370  236374  236380  236382  236388  236392  236394  236398  236404  236410  236412  236418  236422  236424  236430  236434  236440  236448  266669 

科目: 来源: 题型:解答题

1.已知函数f(x)=$\frac{x}{e^x}$-axlnx(a∈R)在x=1处的切线的斜率k=-1.
(1)求a的值;
(2)证明:f(x)<$\frac{2}{e}$.
(3)若正实数m,n满足mn=1,证明:$\frac{1}{e^m}+\frac{1}{e^n}$<2(m+n).

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在六面体ABCD-A1B1C1D1中,平面ABCD∥平面A1B1C1D1,DD1∥平面A1B1BA,DD1∥平面B1BCC1
(1)证明:DD1∥BB1
(2)已知六面体ABCD-A1B1C1D1的棱长均为2,且BB1⊥平面ABCD,∠BAD=60°,M,N分别为棱A1B1,B1C1的中点,求四面体D-MNB的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

19.甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.
ABCDEFG
(1)将硬币连续投掷三次,求筹码停在C处的概率;
(2)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,已知AD是△ABC内角∠BAC的角平分线.
(1)用正弦定理证明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知数列{an}是首项为1的单调递增的等比数列,且满足a3,$\frac{5}{3}{a_4},{a_5}$成等差数列.
(1)求{an}的通项公式;
(2)若bn=log3an+1(n∈N*),求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知数列{an}的前n项和Sn=2an-2n+1(n∈N*),则其通项公式an=n•2n-1

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知平面区域D=$\left\{{({x,y})\left|\begin{array}{l}\\ 3x+y≥3\\ x-y≤2\\ x+3y≤3\end{array}\right.}\right\}$,z=3x-2y,若命题“?(x0,y0)∈D,z>m”为假命题,则实数m的最小值为$\frac{25}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知向量$\overrightarrow a$=(1,-1),$\overrightarrow b$=(1,2),则$\overrightarrow b-\overrightarrow a$与$\overrightarrow a+2\overrightarrow b$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.如图,正方体ABCD-A1B1C1D1绕其体对角线BD1旋转θ之后与其自身重合,则θ的值可以是(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.甲、乙两位同学约定周日早上8:00-8:30在学校门口见面,已知他们到达学校的时间是随机的,则甲要等乙至少10分钟才能见面的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

同步练习册答案