相关习题
 0  236258  236266  236272  236276  236282  236284  236288  236294  236296  236302  236308  236312  236314  236318  236324  236326  236332  236336  236338  236342  236344  236348  236350  236352  236353  236354  236356  236357  236358  236360  236362  236366  236368  236372  236374  236378  236384  236386  236392  236396  236398  236402  236408  236414  236416  236422  236426  236428  236434  236438  236444  236452  266669 

科目: 来源: 题型:选择题

1.如图所示的程序框图,运行程序后,输出的结果等于(  )
A.6B.5C.4D.3

查看答案和解析>>

科目: 来源: 题型:选择题

20.函数f(x)=lg(-x)+$\frac{1}{x}$的零点所在区间为(  )
A.(-$\frac{1}{2}$,0)B.(-3,-2)C.(-2,-1)D.(-1,0)

查看答案和解析>>

科目: 来源: 题型:选择题

19.从1,2,3,4,5,6这6个数字中任取三个数字,其中:①至少有一个偶数与都是偶数;②至少有一个偶数与都是奇数;③至少有一个偶数与至少有一个奇数;④恰有一个偶数与恰有两个偶数.上述事件中,是互斥但不对立的事件是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知M=x2-3x+7,N=-x2+x+1,则(  )
A.M<NB.M>N
C.M=ND.M,N的大小与x的取值有关

查看答案和解析>>

科目: 来源: 题型:选择题

17.对变量x,y有观测数据(xi,yi)(i=1,2,3,…,8),得散点图如图①所示,对变量u,v有观测数据(ui,vi)(i=1,2,3,…,8),得散点图如图②所示,由这两个散点图可以判断(  )
A.变量x与y正相关;u与v正相关B.变量x与y正相关;u与v负相关
C.变量x与y负相关;u与v正相关D.变量x与y负相关;u与v负相关

查看答案和解析>>

科目: 来源: 题型:选择题

16.从某工厂生产的P,Q两种型号的玻璃种分别随机抽取8个样品进行检查,对其硬度系数进行统计,统计数据用茎叶图表示(如图所示),则P组数据的众数和Q组数据的中位数分别为(  )
A.22和22.5B.21.5和23C.22和22D.21.5和22.5

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知集合M={x|log3x≤1},N={x|x2+x-2≤0},则M∩N等于(  )
A.{x|-2≤x≤1}B.{x|1≤x≤3}C.{x|0<x≤1}D.{x|0<x≤3}

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知关于x的函数f(x)=x2-2ax+2.
(1)当a≤2时,求f(x)在[$\frac{1}{3}$,3]上的最小值g(a);
(2)如果函数f(x)同时满足:
        ①函数在整个定义域上是单调增函数或单调减函数;
        ②在函数的定义域内存在区间[p,q],使得函数在区间[p,q]上的值域为[p2,q2].则我们称函数f(x)是该定义域上的“闭函数”.
(i)若关于x的函数y=$\sqrt{{x}^{2}-1}$+t(x≥1)是“闭函数”,求实数t的取值范围;
(ii)判断(1)中g(a)是否为“闭函数”?若是,求出p,q的值或关系式;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,函数y=2$\sqrt{3}$cos(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的图象与y轴交于点(0,$\sqrt{6}$),周期是π.
(1)求函数解析式,并写出函数图象的对称轴方程和对称中心;
(2)已知点A($\frac{π}{2}$,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=$\frac{\sqrt{6}}{2}$,x0∈[$\frac{π}{2}$,π]时,求x0的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,在△ABC中,已知AB=2,AC=6,∠BAC=60°,点D,E分别在边AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=5$\overrightarrow{AE}$,
(1)若$\overrightarrow{BF}$=-$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{10}$$\overrightarrow{AC}$,求证:点F为DE的中点;
(2)在(1)的条件下,求$\overrightarrow{BA}$•$\overrightarrow{EF}$的值.

查看答案和解析>>

同步练习册答案