相关习题
 0  236269  236277  236283  236287  236293  236295  236299  236305  236307  236313  236319  236323  236325  236329  236335  236337  236343  236347  236349  236353  236355  236359  236361  236363  236364  236365  236367  236368  236369  236371  236373  236377  236379  236383  236385  236389  236395  236397  236403  236407  236409  236413  236419  236425  236427  236433  236437  236439  236445  236449  236455  236463  266669 

科目: 来源: 题型:选择题

11.定长为l($l>\frac{{2{b^2}}}{a}$)的线段AB的两个端点都在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右支上,则AB中点M的横坐标的最小值为(  )
A.$\frac{a(2a+l)}{{2\sqrt{{a^2}+{b^2}}}}$B.$\frac{a+l}{{2\sqrt{{a^2}+{b^2}}}}$C.$\frac{a(l-2a)}{{2\sqrt{{a^2}+{b^2}}}}$D.$\frac{al}{{2\sqrt{{a^2}+{b^2}}}}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.记所有非零向量构成的集合为V,对于$\overrightarrow{a}$,$\overrightarrow{b}$∈V,$\overrightarrow{a}$≠$\overrightarrow{b}$,定义V($\overrightarrow{a}$,$\overrightarrow{b}$)=|x∈V|x•$\overrightarrow{a}$=x•$\overrightarrow{b}$|
(1)请你任意写出两个平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,并写出集合V($\overrightarrow{a}$,$\overrightarrow{b}$)中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V($\overrightarrow{a}$,$\overrightarrow{b}$)中元素的关系,并试着给出证明;
(3)若V($\overrightarrow{a}$,$\overrightarrow{b}$)=V($\overrightarrow{a}$,$\overrightarrow{c}$),其中$\overrightarrow{b}$≠$\overrightarrow{c}$,求证:一定存在实数λ1,λ2,且λ12=1,使得$\overrightarrow{a}$=λ1$\overrightarrow{b}$+λ2$\overrightarrow{c}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1.
(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1
(Ⅱ)经过椭圆C的左焦点F1作直线l,直线l与椭圆C相交于A,B两点,若|AB|=$\frac{8\sqrt{2}}{7}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知抛物线C:y2=-4x.
(Ⅰ)已知点M在抛物线C上,它与焦点的距离等于5,求点M的坐标;
(Ⅱ)直线l过定点P(1,2),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;两个公共点;没有公共点.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知两点A(3,2),B(-1,2),圆C以线段AB为直径.
(Ⅰ)求圆C的方程;
(Ⅱ)求过点M(3,1)的圆C的切线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

6.(Ⅰ)求平行于直线x-2y+1=0,且与它的距离为2$\sqrt{5}$的直线方程;
(Ⅱ)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:2x+3y+1=0垂直的直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

5.过点P(-2,3)且在两坐标轴上的截距相等的直线l的方程为x+y-1=0或3x+2y=0.

查看答案和解析>>

科目: 来源: 题型:填空题

4.抛物线x2=2py(p>0)的准线方程为y=-3,则p=6.

查看答案和解析>>

科目: 来源: 题型:填空题

3.设i为虚数单位,若复数z=(2m-8)+(m-2)i是纯虚数,则实数m=4.

查看答案和解析>>

科目: 来源: 题型:选择题

2.若圆C1:(x-a)2+y2=4与圆C2:x2+(y-$\sqrt{5}$)2=a2相外切,则实数a的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{4}$或-$\frac{1}{4}$C.$\frac{1}{2}$或-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案