相关习题
 0  236277  236285  236291  236295  236301  236303  236307  236313  236315  236321  236327  236331  236333  236337  236343  236345  236351  236355  236357  236361  236363  236367  236369  236371  236372  236373  236375  236376  236377  236379  236381  236385  236387  236391  236393  236397  236403  236405  236411  236415  236417  236421  236427  236433  236435  236441  236445  236447  236453  236457  236463  236471  266669 

科目: 来源: 题型:选择题

11.已知△ABC的内角A,B,C所对的边分别为a,b,c,若A=30°,a=1,则$\frac{b+c}{sinB+sinC}$等于(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.设Sn为等比数列{an}的前n项和,若8a2+a5=0,则$\frac{{S}_{5}}{{S}_{2}}$等于(  )
A.$\frac{11}{3}$B.5C.-8D.-11

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知函数f(x)=ex+$\frac{2x-5}{{x}^{2}+1}$的图象在点(0,f(0))处的切线与直线x-my+4=0垂直,则实数m的值为(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.设△ABC的内角A,B,C所对的边分别为a,b,c,若a2+b2<c2,则△ABC的形状是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=2ex-$\frac{1}{2}$ax
(Ⅰ)求f(x)的单调区间
(Ⅱ)若x≥0时,f(x)≥(x-a)2-$\frac{1}{2}$ax-3恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率为$\frac{\sqrt{2}}{2}$,右焦点为F(c,0)到直线x=$\frac{{a}^{2}}{c}$的距离为1
(Ⅰ)求椭圆C的方程
(Ⅱ)不经过坐标原点O的直线l与椭圆C交于A,B两点,且线段AB中点在直线y=$\frac{1}{2}$x上,求△OAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.为了研究某学科成绩是否在学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分)

(Ⅰ)求男生和女生的平均成绩
(Ⅱ)请根据图示,将2×2列联表补充完整,并根据此列联表判断,能否在犯错误概率不超过10%的前提下认为“该学科成绩与性别有关”?
优分非优分合计
男生
女生
合计50
(Ⅲ)用分层抽样的方法从男生和女生中抽取5人进行学习问卷调查,并从5人中选取两名学生对该学科进行考后重测,求至少有一名女生的概率
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k2 0.500.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001 
 k0 0.460.71 1.32 2.07 2.71 3.84 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图所示,菱形ABEF⊥直角梯形ABCD,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中点
(1)求证:平面AHC⊥平面BCE; 
(2)求此几何体的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在△ABC中,内角A,B,C所对的边分别为a,b,c满足a≠b,2sin(A-B)=asinA-bsinB
(Ⅰ)求边c
(Ⅱ)若△ABC的面积为1,且tanC=2,求a+b的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知{an}是正项等差数列,数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和Sn=$\frac{n}{2n+4}$,若bn=(-1)n•an2,则数列{bn}的前n项和T2n=2n2+3n.

查看答案和解析>>

同步练习册答案