相关习题
 0  236304  236312  236318  236322  236328  236330  236334  236340  236342  236348  236354  236358  236360  236364  236370  236372  236378  236382  236384  236388  236390  236394  236396  236398  236399  236400  236402  236403  236404  236406  236408  236412  236414  236418  236420  236424  236430  236432  236438  236442  236444  236448  236454  236460  236462  236468  236472  236474  236480  236484  236490  236498  266669 

科目: 来源: 题型:选择题

15.已知向量$\overrightarrow a=({m,1}),\overrightarrow b=({1,n-2}),({m>0,n>0})$若$\overrightarrow a⊥\overrightarrow b$,则$\frac{1}{m}+\frac{2}{n}$的最小值为(  )
A.2$\sqrt{2}$B.$\frac{3}{2}$+$\sqrt{2}$C.3$\sqrt{2}$+2D.2$\sqrt{2}$+3

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知函数$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的图象关于直线x=1对称,把f(x)的图象向右平移3个单位长度后,所得图象对应的函数解析式为(  )
A.y=sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=sin($\frac{π}{3}$x-$\frac{π}{6}$)C.y=cos($\frac{π}{3}$x+$\frac{π}{6}$)D.y=sin($\frac{π}{3}$x-$\frac{5π}{6}$)

查看答案和解析>>

科目: 来源: 题型:选择题

13.若$α∈(0,\frac{π}{2})$,且${sin^2}α+cos2α=\frac{1}{4}$,则tanα的值等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.在平行四边形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AM}=4\overrightarrow{MC},P$为AD的中点,$\overrightarrow{MP}$=(  )
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$B.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{13}{10}$$\overrightarrow{b}$C.-$\frac{4}{5}$$\overrightarrow{a}$-$\frac{3}{10}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.下列命题正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,c>d>0,则$\frac{a}{d}>\frac{b}{c}$
C.若a<b<0,则ab<b2D.若$\frac{a}{b}>1$,则a>b

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx,-1),$\overrightarrow{n}$=(sinx,cos2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.若x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$,求cos2x的值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.若实数a,b满足$\frac{1}{a}+\frac{2}{b}=2\sqrt{ab}$,则ab的最小值为$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.若直线y=2x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有公共点,则双曲线的离心率的取值范围为(  )
A.(1,$\sqrt{5}$)B.($\sqrt{5}$,+∞)C.(1,$\sqrt{5}$]D.[$\sqrt{5}$,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{1}{2}$ax2-2x.
(Ⅰ)若函数f(x)在定义域内单调递增,求a的取值范围;
(Ⅱ)若a=-$\frac{1}{2}$且关于x的方程f(x)=-$\frac{1}{2}$x+b在(1,4)上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=(x2+$\frac{3}{2}$)(x+a)(a∈R).
(Ⅰ)若函数f(x)的图象上有与x轴平行的切线,求a的范围;
(Ⅱ)若f′(-1)=0.证明:对任意的x1,x2∈,不等式|f(x1)-f(x2)|≤$\frac{5}{16}$恒成立.

查看答案和解析>>

同步练习册答案