相关习题
 0  236315  236323  236329  236333  236339  236341  236345  236351  236353  236359  236365  236369  236371  236375  236381  236383  236389  236393  236395  236399  236401  236405  236407  236409  236410  236411  236413  236414  236415  236417  236419  236423  236425  236429  236431  236435  236441  236443  236449  236453  236455  236459  236465  236471  236473  236479  236483  236485  236491  236495  236501  236509  266669 

科目: 来源: 题型:选择题

5.抽取以下两个样本:①从二(1)班数学成绩最好的10名学生中选出2人代表班级参加数学竞赛;②从学校1000名高二学生中选出50名代表参加某项社会实践活动.下列说法正确的是(  )
A.①、②都适合用简单随机抽样方法
B.①、②都适合用系统抽样方法
C.①适合用简单随机抽样方法,②适合用系统抽样方法
D.①适合用系统抽样方法,②适合用简单随机抽样方法

查看答案和解析>>

科目: 来源: 题型:解答题

4.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数246810
售价16139.574.5
(1)若这两个变量呈线性相关关系,试求y关于x的回归直线方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2-1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?
(销售一辆该型号汽车的利润=销售价格-收购价格)
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求这部分学生成绩的样本平均数$\overline x$和样本方差s2(同一组数据用该组的中点值作为代表)
(2)由频率分布直方图可以认为,该校高二学生在这次测验中的数学成绩X服从正态分布$N(\overline x,{s^2})$.
①利用正态分布,求P(X≥129);
②若该校高二共有1000名学生,试利用①的结果估计这次测验中,数学成绩在129分以上(含129分)的学生人数.(结果用整数表示)
附:①$\sqrt{210}$≈14.5②若X~N(μ,σ2),则P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知常数m≠0,n≥2且n∈N,二项式(1+mx)n的展开式中,只有第6项的二项式系数最大,第三项系数是第二项系数的9倍.
(1)求m、n的值;
(2)若记(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n,求a0-a1+a2-a3+…+(-1)nan除以6的余数.

查看答案和解析>>

科目: 来源: 题型:解答题

1.2016年12月1日,汉孝城际铁路正式通车运营.除始发站(汉口站)与终到站(孝感东站)外,目前沿途设有7个停靠站,其中,武汉市辖区内有4站(后湖站、金银潭站、天河机场站、天河街站),孝感市辖区内有3站(闵集站、毛陈站、槐荫站).为了了解该线路运营状况,交通管理部门计划从这7个车站中任选3站调研.
(1)求孝感市辖区内至少选中1个车站的概率;
(2)若孝感市辖区内共选中了X个车站,求随机变量X的分布列与期望.

查看答案和解析>>

科目: 来源: 题型:解答题

20.国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:
支持不支持合计
中老年组104050
中青年组252550
合 计3565100
(1)根据以上信息完成2×2列联表;
(2)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?
P(K2≥k00.0500.0100.001
k03.8416.63510.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同
(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,1个白球的概率;
(2)采用放回抽样,每次随机取一球,连续取5次,求恰有两次取到红球的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

18.历年气象统计表明:某地区一天下雨的概率是$\frac{1}{3}$,连续两天下雨的概率是$\frac{1}{5}$.已知该地区某天下雨,则随后一天也下雨的概率是$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知随机变量ξ~B(n,p),若$E(ξ)=\frac{5}{3}$,$D(ξ)=\frac{10}{9}$,则n=5,p=$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知$C_{20}^{3x}=C_{20}^{x+4}$,则x=2或4.

查看答案和解析>>

同步练习册答案