相关习题
 0  236325  236333  236339  236343  236349  236351  236355  236361  236363  236369  236375  236379  236381  236385  236391  236393  236399  236403  236405  236409  236411  236415  236417  236419  236420  236421  236423  236424  236425  236427  236429  236433  236435  236439  236441  236445  236451  236453  236459  236463  236465  236469  236475  236481  236483  236489  236493  236495  236501  236505  236511  236519  266669 

科目: 来源: 题型:选择题

8.下列命题中错误的个数为:(  )
①y=$\frac{1}{2}+\frac{1}{{{2^x}-1}}$的图象关于(0,0)对称;
②y=x3+x+1的图象关于(0,1)对称;
③y=$\frac{1}{{{x^2}-1}}$的图象关于直线x=0对称;
④y=sinx+cosx的图象关于直线x=$\frac{π}{4}$对称.
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:填空题

7.某班级原有一张周一到周五的值日表,五位班干部每人值一天,现将值日表进行调整,要求原周一和周五的两人都不值这两天,周二至周四的这三人都不值自己原来的日期,则不同的调整方法种数是24(用数字作答).

查看答案和解析>>

科目: 来源: 题型:填空题

6.若实数a>b>1,且logab+logba=$\frac{5}{2}$,则logab=$\frac{1}{2}$;$\frac{a}{{b}^{2}}$=1.

查看答案和解析>>

科目: 来源: 题型:解答题

5.求证:sin3θ(1+cotθ)+cos3θ(1+tanθ)=sinθ+cosθ.并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

4.若函数y=f(x),x∈D,对任意的x1∈D,总存在x2∈D,使得f(x1)•f(x2)=1,则称函数f(x)具有性质M.
(1)判断函数y=2x和y=log2x是否具有性质M,说明理由;
(2)若函数y=log8(x+2),x∈[0,t]具有性质M,求t的值;
(3)若函数y=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$(a≠0)在实数集R上具有性质M,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知抛物线C:y2=4x的交点为F,直线y=x-1与C相交于A,B两点,与双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=2(a>0,b>0)的渐近线相交于M,N两点,若线段AB与MN的中点相同,则双曲线E离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.2C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{(a+1)x-2a,x<3}\\{lo{g}_{3}x,x≥3}\end{array}\right.$的值域为R,则实数a的范围是(  )
A.[-1,1]B.(-1,1]C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目: 来源: 题型:选择题

1.设a≠0,函数f(x)=$\left\{\begin{array}{l}4{log_2}(-x),x<0\\|{{x^2}+ax}|,x≥0\end{array}$,若$f(f(-\sqrt{2}))=4$,则f(a)等于(  )
A.8B.4C.2D.1

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知圆C的方程为(x-3)2+y2=1,圆M的方程为(x-3-3cosθ)2+(y-3sinθ)2=1(θ∈R),过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则∠APB的最大值为$\frac{π}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知点A(-2,0)、B(2,0),P是平面内的一个动点,直线PA与PB的斜率之积是-$\frac{1}{2}$.
(Ⅰ)求曲线C的方程;
(Ⅱ)直线y=k(x-1)与曲线C交于不同的两点M、N,当△AMN的面积为$\frac{12\sqrt{2}}{5}$时,求k的值.

查看答案和解析>>

同步练习册答案