相关习题
 0  236331  236339  236345  236349  236355  236357  236361  236367  236369  236375  236381  236385  236387  236391  236397  236399  236405  236409  236411  236415  236417  236421  236423  236425  236426  236427  236429  236430  236431  236433  236435  236439  236441  236445  236447  236451  236457  236459  236465  236469  236471  236475  236481  236487  236489  236495  236499  236501  236507  236511  236517  236525  266669 

科目: 来源: 题型:解答题

8.设数列{an}的前n项和为Sn,已知$\frac{{2{S_n}}}{3}-{3^{n-1}}$=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足${b_n}=\frac{{{{log}_3}{a_n}}}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$.
(Ⅰ)若AC的中点为E,求A1C与DE所成的角的正弦值;
(Ⅱ)求二面角B1-AC-D1(锐角)的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知命题p:不等式x2-2ax-2a+3≥0恒成立;命题q:不等式x2+ax+2<0有解.
(Ⅰ)若p∨q和¬q均为真命题,求实数a的取值范围;
(Ⅱ)若p是真命题,抛物线y=x2与直线y=ax+1相交于M,N两点,O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.方程$\frac{x|x|}{81}+\frac{y|y|}{49}=λ(λ<0)$的曲线即为y=f(x)的图象,对于函数y=f(x),下列命题中正确的是②③⑤.(请写出所有正确命题的序号)
①函数y=f(x)的图象关于直线y=x对称;
②函数y=f(x)在R上是单调递减函数;
③函数y=f(x)的图象不经过第一象限;
④函数F(x)=9f(x)+7x至少存在一个零点;
⑤函数y=f(x)的值域是R.

查看答案和解析>>

科目: 来源: 题型:填空题

4.如图,在正四棱柱ABCD-A1B1C1D1中,底面ABCD的边长为7,BD1与底面所成角的大小为$arctan\frac{6}{7}$,则该正四棱柱的高等于$6\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.定义$\frac{n}{{{a_1}+{a_2}+…+{a_n}}}$为n个正数a1,a2,…an的“均倒数”.若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又${b_n}=\frac{{{a_n}+1}}{4}$,则$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_{2016}}{b_{2017}}}}$=(  )
A.$\frac{2016}{2017}$B.$\frac{1}{2017}$C.$\frac{2015}{2016}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.若变量x,y满足约束条件$\left\{\begin{array}{l}y≥x\\ x+y≤2\\ x≥a.\end{array}\right.$且目标函数z=2x-y的最大值是最小值的2倍,则a的值是(  )
A.$\frac{1}{2}$B.4C.3D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.在△ABC中,内角A,B,C的对边分别是a,b,c,已知a2-c2=2b,且sinA•cosC=3cosA•sinC,则b的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目: 来源: 题型:选择题

20.下列函数中,最小值为4的是(  )
A.y=$\frac{lgx}{2}+\frac{8}{lgx}$B.y=$2\sqrt{{x^2}+2}+\frac{2}{{\sqrt{{x^2}+2}}}$
C.$y=sinx+\frac{4}{sinx}$(0<x<π)D.y=ex+4e-x

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知各项均为正数的等比数列{an}中,$3{a_1},\frac{1}{2}{a_3},2{a_2}$成等差数列,则$\frac{{{a_{11}}+{a_{13}}}}{{{a_8}+{a_{10}}}}$=(  )
A.27B.-1或27C.3D.-1或3

查看答案和解析>>

同步练习册答案