相关习题
 0  236353  236361  236367  236371  236377  236379  236383  236389  236391  236397  236403  236407  236409  236413  236419  236421  236427  236431  236433  236437  236439  236443  236445  236447  236448  236449  236451  236452  236453  236455  236457  236461  236463  236467  236469  236473  236479  236481  236487  236491  236493  236497  236503  236509  236511  236517  236521  236523  236529  236533  236539  236547  266669 

科目: 来源: 题型:填空题

15.已知与向量$\overrightarrow{v}$=(1,0)平行的直线l与双曲线$\frac{{x}^{2}}{4}$-y2=1相交于A、B两点,则|AB|的最小值为4.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知实数x,y满足x2+y2≤1,3x+4y≤0,则$\frac{x-3}{x-y-2}$的取值范围是(  )
A.[1,4]B.[$\frac{19}{17}$,4]C.[1,$\frac{11}{3}$]D.[$\frac{19}{17}$,$\frac{11}{3}$]

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线N:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,其中b>a>0,双曲线M和双曲线N交于A,B,C,D四个点,且四边形ABCD的面积为4c2,则双曲线M的离心率为(  )
A.$\frac{\sqrt{5}+3}{2}$B.$\sqrt{5}$+3C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知函数f(x)=sin(2x+$\frac{π}{3}$),对任意的x1,x2,x3,且0≤x1<x2<x3≤π,都有|f(x1)-f(x2)|+|f(x2)-f(x3)|≤m成立,则实数m的最小值为3+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知x,y∈R,满足x2+2xy+4y2=6,则z=x+y的取值范围为$[-\sqrt{6},\sqrt{6}]$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分线交BC于D,则$\overrightarrow{AD}$$•\overrightarrow{AC}$的值等于(  )
A.$\frac{17}{5}$B.$\frac{33}{5}$C.6D.$\frac{27}{5}$

查看答案和解析>>

科目: 来源: 题型:填空题

9.设函数f(x)=$\frac{5}{{x}^{2}}$-3x2+2,则使得f(1)>f(log3x)成立的x取值范围为0<x<3或x>3.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知向量$\overrightarrow a$=(cos($\frac{π}{2}$-x),sin($\frac{π}{2}$+x)),$\overrightarrow b$=(sin($\frac{π}{2}$+x),sinx),若x=-$\frac{π}{12}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=2an-2.
(Ⅰ)求数列{an}的通项公式
(Ⅱ)若数列{$\frac{n+1}{{a}_{n}}$} 的前n 项和为Tn,求证:1≤Tn<3.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,D是AB的中点.
(1)求证:BC1∥平面A1CD;
(2)若AA1=AC=CB=5,AB=6,求三棱锥D-AA1C的体积.

查看答案和解析>>

同步练习册答案