相关习题
 0  236452  236460  236466  236470  236476  236478  236482  236488  236490  236496  236502  236506  236508  236512  236518  236520  236526  236530  236532  236536  236538  236542  236544  236546  236547  236548  236550  236551  236552  236554  236556  236560  236562  236566  236568  236572  236578  236580  236586  236590  236592  236596  236602  236608  236610  236616  236620  236622  236628  236632  236638  236646  266669 

科目: 来源: 题型:解答题

1.已知函数f(x)=2x2-(m2+m+1)x+15,g(x)=m2x-m,其中m∈R.
(1)若f(x)+g(x)+m≥0,对x∈[1,4)恒成立,求实数m的取值范围;
(2)设函数$F(x)=\left\{{\begin{array}{l}{g(x),x≥0}\\{f(x),x<0}\end{array}}\right.$
①对任意的x1>0,存在唯一的实数x2<0,使其F(x1)=F(x2),求m的取值范围;
②是否存在求实数m,对任意给定的非零实数x1,存在唯一非零实数x2(x1≠x2),使其F(x2)=F(x1),若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在平面直角坐标系中,已知点O(0,0),A(3,0),B(0,3),C(cosα,sinα).
(1)若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,求$\frac{{2{{sin}^2}α+sin2α}}{1+tanα}$的值;
(2)若f(α)=-2cos2α-tsinα-t2+2在$α∈(\frac{π}{2},\frac{3π}{2})$时有最小值-1,求常数t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.请你设计一个仓库.它的上部是底面圆半径为5m的圆锥,下部是底面圆半径为5m的圆柱,且该仓库的总高度为5m.经过预算,制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/m2,1百元/m2,设圆锥母线与底面所成角为θ,且$θ∈({0,\frac{π}{4}})$.
(1)设该仓库的侧面总造价为y,写出y关于θ的函数关系式;
(2)问θ为多少时,该仓库的侧面总造价(单位:百元)最少?并求出此时圆锥的高度.

查看答案和解析>>

科目: 来源: 题型:填空题

18.函数f(x)=x•ex,则f′(1)=2e.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若正数x,y满足x+2y-9=0,则$\frac{2}{y}+\frac{1}{x}$的最小值为1.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知复数z1=3-i,|z2|=2,则|z1+z2|的最大值是(  )
A.$\sqrt{10}-\sqrt{2}$B.$\sqrt{10}+\sqrt{2}$C.$\sqrt{10}$+2D.$\sqrt{10}-2$

查看答案和解析>>

科目: 来源: 题型:选择题

15.下列说法中正确的是(  )
A.若p∨q为真命题,则p,q均为真命题
B.“a≥5”是“?x∈[1,2],x2-a≤0恒成立“的充要条件
C.在△ABC中,“a>b”是“sinA>sinB”的必要不充分条件
D.命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知复数z1=$\frac{3+i}{1-i}$的实部为a,复数z2=i(2+i)的虚部为b,复数z=b+ai的共轭复数在复平面内的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=sin x+cos x.
(1)若f(x)=2f(-x),求$\frac{co{s}^{2}x-sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函数F(x)=f(x)f(-x)+f 2(x),x∈(0,$\frac{π}{2}$)的值域和单调递增区间.

查看答案和解析>>

科目: 来源: 题型:选择题

12.函数y=x-ex的增区间为(  )
A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

同步练习册答案