相关习题
 0  236461  236469  236475  236479  236485  236487  236491  236497  236499  236505  236511  236515  236517  236521  236527  236529  236535  236539  236541  236545  236547  236551  236553  236555  236556  236557  236559  236560  236561  236563  236565  236569  236571  236575  236577  236581  236587  236589  236595  236599  236601  236605  236611  236617  236619  236625  236629  236631  236637  236641  236647  236655  266669 

科目: 来源: 题型:解答题

11.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=$\frac{1}{2}$,P是椭圆上的一点,已知△PF1F2内切圆半径为1,内心为I,且S${\;}_{△PI{F}_{1}}$+S${\;}_{△PI{F}_{2}}$=2.
(1)求椭圆E的方程;
(2)过椭圆的左焦点F1做两条互相垂直的弦AB,CD,求|$\overrightarrow{AB}$|+|$\overrightarrow{CD}$|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn+2=2an,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}}$,cn=$\frac{\sqrt{{b}_{n}{b}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,1+cosωx),$\overrightarrow{n}$=(cosωx,1-cosωx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中ω>0,若f(x)的一条对称轴离最近的对称中心的距离为$\frac{π}{4}$.
(1)求f(x)的对称中心;
(2)若g(x)=f(x)+m在区间[0,$\frac{π}{2}$]上存在两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.关于x的函数f(x)=$\frac{{x}^{3}+t{x}^{2}+\sqrt{2}tsin(x+\frac{π}{4})+2t}{{x}^{2}+2+cosx}$(t≠0)的最大值为m,最小值为n,且m+n=2017,则实数t的值为$\frac{2017}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知抛物线y2=2px(p>0),过焦点F,且倾斜角为60°的直线与抛物线交于A,B两点,若|AF|=6,则|BF|=2或18.

查看答案和解析>>

科目: 来源: 题型:选择题

6.下面说法不正确的选项(  )
A.函数的单调区间可以是函数的定义域
B.函数的多个单调增区间的并集也是其单调增区间
C.具有奇偶性的函数的定义域定关于原点对称
D.关于原点对称的图象一定是奇函数的图象

查看答案和解析>>

科目: 来源: 题型:填空题

5.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.41,摸出白球的概率是0.27,那么摸出黑球的概率是0.32.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知椭圆具有性质:若M、N是椭圆上关于原点对称的两个点,点P是椭圆上的任意一点,当直线PM、PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与P点无关的定值.现将椭圆改为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),且kPM<0、kPN<0,则kPM+kPN的最大值为(  )
A.$-\frac{2b}{a}$B.$-\frac{2a}{b}$C.$-\frac{{\sqrt{2}b}}{a}$D.$-\frac{{\sqrt{2}b}}{a}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,一个顶点为A(2,0),离心率为$\frac{{\sqrt{2}}}{2}$,直线y=k(x-1)与椭圆C交于不同的两点M、N两点.
(1)求椭圆C的方程;
(2)当△AMN的面积为$\frac{{4\sqrt{2}}}{5}$时,求k的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数);在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=2sinθ;
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率$k∈[1,\sqrt{3})$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

同步练习册答案