相关习题
 0  236477  236485  236491  236495  236501  236503  236507  236513  236515  236521  236527  236531  236533  236537  236543  236545  236551  236555  236557  236561  236563  236567  236569  236571  236572  236573  236575  236576  236577  236579  236581  236585  236587  236591  236593  236597  236603  236605  236611  236615  236617  236621  236627  236633  236635  236641  236645  236647  236653  236657  236663  236671  266669 

科目: 来源: 题型:选择题

17.已知a=log27,b=log20.7,c=20.7,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目: 来源: 题型:选择题

16.sin2010°的值等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.函数f(x)=$\frac{ln(x-1)}{\sqrt{4-{x}^{2}}}$的定义域为(  )
A.(1,2)B.[1,2]C.(1,4)D.[2,4]

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知集合A={-1,0,1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∩B=(  )
A.{1}B.{0,1}C.{-1,0,1,2}D.{-1,0,1,2,3}

查看答案和解析>>

科目: 来源: 题型:选择题

13.关于函数f(x)=x2-2x+1的零点,下列说法正确的是(  )
A.因为f(0)?f(2)>0,所以f(x)在(0,2)内没有零点
B.因为1是f(x)的一个零点,所以f(0)?f(2)<0
C.由于f(x)在区间(-∞,0)上单调递减,所以f(x)在(-∞,0)内有唯一的一个零点
D.以上说法都不对

查看答案和解析>>

科目: 来源: 题型:填空题

12.当x∈[2,3]时,x2+ax+a+1<0恒成立,则a的范围是(-∞,-$\frac{5}{2}$).

查看答案和解析>>

科目: 来源: 题型:填空题

11.$sin\frac{7π}{8}cos\frac{7π}{8}$=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.设函数f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且f(-x)=f(x),则(  )
A.f(x)在$({0,\frac{π}{2}})$单调递减B.f(x)在$({\frac{π}{2},π})$单调递减
C.f(x)在$({0,\frac{π}{2}})$单调递增D.f(x)在(0,π)单调递增

查看答案和解析>>

科目: 来源: 题型:选择题

9.若函数y=log3x的反函数为y=g(x),则$g(\frac{1}{2})$的值是(  )
A.3B.${log_3}\frac{1}{2}$C.log32D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左,右焦点分别为F1,F2,上顶点为B.Q为抛物线y2=24x的焦点,且$\overrightarrow{{F_1}B}•\overrightarrow{QB}=0$,$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{Q{F_1}}$=0
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过定点P(0,4)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案