相关习题
 0  236485  236493  236499  236503  236509  236511  236515  236521  236523  236529  236535  236539  236541  236545  236551  236553  236559  236563  236565  236569  236571  236575  236577  236579  236580  236581  236583  236584  236585  236587  236589  236593  236595  236599  236601  236605  236611  236613  236619  236623  236625  236629  236635  236641  236643  236649  236653  236655  236661  236665  236671  236679  266669 

科目: 来源: 题型:填空题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{2-y≥0}\\{x-3y+2≤0}\\{4x-5y+2≥0}\end{array}\right.$,则目标函数z=x-2y的最大值为0.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知正三棱柱ABC-A1B1C1的顶点都在球O的球面上,AB=2,AA1=4,则球面O的表面积为(  )
A.$\frac{32π}{3}$B.32πC.64πD.$\frac{64π}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与圆(x+1)2+(y-$\sqrt{3}$)2=1相切,则此双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:填空题

14.设直线l为抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,则p=2.

查看答案和解析>>

科目: 来源: 题型:选择题

13.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:
第一步:构造数列1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,…,$\frac{1}{n}$.①
第二步:将数列①的各项乘以n,得到数列(记为)a1,a2,a3,…,an.则a1a2+a2a3+…+an-1an=(  )
A.n2B.(n-1)2C.n(n-1)D.n(n+1)

查看答案和解析>>

科目: 来源: 题型:选择题

12.若|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=-2,则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知等比数列{an}中,a1+a2=3,a3+a4=12,则a5+a6=(  )
A.3B.15C.48D.63

查看答案和解析>>

科目: 来源: 题型:解答题

10.数列{an}是公差不为零的等差数列,Sn是其前n项和,已知a2+a3+a5=20,且a2、a4、a8成等比数列,记M=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.
(1)求M;
(2)数列{bn}的前n项和为Tn,已知Tn=2(bn-1),试比较Tn与M+1的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,在三棱锥D-ABC中,AB=BC=CD=2,AD=2$\sqrt{3}$,∠ABC=90°,平面ACD⊥平面ABC.
(1)求证:AB⊥BD;
(2)求点C到平面ABD的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

8.某校为了了解高三学生体育达标情况,在高三学生体育达标成绩中随机抽取50个进行调研,按成绩分组:第l组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查:
(1)已知学生甲的成绩在第5组,求学生甲被抽中复查的概率;
(2)在已抽取到的6名学生中随机抽取2名学生接受篮球项目的考核,求其中一人在第3组,另一人在第4组的概率.

查看答案和解析>>

同步练习册答案