相关习题
 0  236486  236494  236500  236504  236510  236512  236516  236522  236524  236530  236536  236540  236542  236546  236552  236554  236560  236564  236566  236570  236572  236576  236578  236580  236581  236582  236584  236585  236586  236588  236590  236594  236596  236600  236602  236606  236612  236614  236620  236624  236626  236630  236636  236642  236644  236650  236654  236656  236662  236666  236672  236680  266669 

科目: 来源: 题型:填空题

7.已知下列命题:
①有两个侧面是矩形的四棱柱是直四棱柱;
②若一个三棱锥三个侧面都是全等的等腰三角形,则此三棱锥是正三棱锥;
③已知f(x)的定义域为[-2,2],则f(2x-3)的定义域为[1,3];
④设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于直线x=1对称;
⑤已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x≤2}\\{-\frac{1}{2}x+2,x>2}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(2,4)
其中正确的是④⑤.(填上所有正确命题的序号)

查看答案和解析>>

科目: 来源: 题型:选择题

6.如图所示,正方体ABCD-A′B′C′D′的棱长为1,E、F分别是棱是AA′,CC′的中点,过直线EF的平面分别与棱BB′,DD′交于M,N,设BM=x,x∈[0,1],给出以下四种说法:
(1)平面MENF⊥平面BDD′B′;
(2)当且仅当x=$\frac{1}{2}$时,四边形MENF的面积最小;
(3)四边形MENF周长L=f(x),x∈[0,1]是单调函数;
(4)四棱锥C′-MENF的体积V=h(x)为常函数,以上说法中正确的为(  )
A.(2)(3)B.(1)(3)(4)C.(1)(2)(3)D.(1)(2)

查看答案和解析>>

科目: 来源: 题型:选择题

5.曲线y=1+$\sqrt{4-{x}^{2}}$与直线kx-y-2k+4=0有两个交点时,实数k取值范围是(  )
A.($\frac{5}{12}$,$\frac{3}{4}$]B.($\frac{5}{12}$,$\frac{3}{4}$)C.($\frac{1}{3}$,$\frac{3}{4}$]D.(0,$\frac{5}{12}$)

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图所示是一个几何体的三视图,则该几何体的体积为 (  )
A.$\frac{64}{3}$B.16C.$\frac{32}{3}$D.48

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知映射f:A→B,其中A={x|x>0},B=R,对应法则f:x→-x2+2x,对于实数k∈B,在集合A中存在两个不同的原像,则k的取值范围为(  )
A.k>0B.k<1C.0<k≤1D.0<k<1

查看答案和解析>>

科目: 来源: 题型:选择题

2.三个数a=0.65,b=50.6,c=log0.65,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,两焦点分别为F1、F2,过F1的直线交椭圆C于M、N两点,且△MF2N的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若|MN|=$\frac{8}{5}$,求△MF2N的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC,O为AB的中点,OF⊥EC.
(Ⅰ)求证:OE⊥FC;
(Ⅱ)若AC=$\sqrt{3}$.AB=2时,求三棱锥O-CEF的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

19.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=5,则△AOF的面积为$\frac{5}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.若过点p(1,$\sqrt{3}$)作圆O:x2+y2=1的两条切线,切点分别为A、B两点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案