相关习题
 0  236504  236512  236518  236522  236528  236530  236534  236540  236542  236548  236554  236558  236560  236564  236570  236572  236578  236582  236584  236588  236590  236594  236596  236598  236599  236600  236602  236603  236604  236606  236608  236612  236614  236618  236620  236624  236630  236632  236638  236642  236644  236648  236654  236660  236662  236668  236672  236674  236680  236684  236690  236698  266669 

科目: 来源: 题型:解答题

16.2016年10月中旬台风“莎莉嘉”登陆某海滨城市,某条长度为10千米的供电线路遭到严重破坏,造成大面积停电,为了快速恢复通电,某电力公司组织人员进行抢修,同时为了保证质量,抢修速度不得超过c千米/小时,已知每小时的抢修成本(以元为单位)由可变部分和固定部分组成:可变部分与抢修的速度v(单位:千米/小时)的平方成正比,比例系数为400,固定部分为10000元.
(1)把抢修成本y(元)表示为速度v(千米/小时)的函数,并指出函数的定义域;
(2)为使抢修成本最小,电力公司应该以多大的速度进行抢修?

查看答案和解析>>

科目: 来源: 题型:选择题

15.设F1,F2是椭圆C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}$=1(a1>b1>0)与双曲线C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}$=1(a2>0,b2>0)的公共焦点,曲线C1,C2在第一象限内交于点M,∠F1MF2=90°,若椭圆C1的离心率e1∈[$\frac{{\sqrt{6}}}{3}$,1),则双曲线C2的离心率e2的范围是(  )
A.$({1,\sqrt{3}}]$B.$({1,\sqrt{2}}]$C.$[{\sqrt{3},+∞})$D.$[{\sqrt{2},+∞})$

查看答案和解析>>

科目: 来源: 题型:选择题

14.抛物线y2=4x上到焦点的距离等于3的点的坐标是(  )
A.(2$\sqrt{2}$,2)B.(2$\sqrt{2}$,2)或(-2$\sqrt{2}$,2)C.(2,2$\sqrt{2}$)D.(2,2$\sqrt{2}$)或(2,-2$\sqrt{2}$)

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{12}$=1(a>2$\sqrt{3}$)的左焦点为F,左顶点为A,$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率,过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知点Q(-3,0),P为线段AD上一点且|AP|=λ|AD|,是否存在定值λ使得OP⊥EQ恒成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知一个路口的红绿灯,红灯的时间为35秒,黄灯的时间为5秒,绿灯的时间为60秒,老王开车上班要经过3个这样的路口,则老王遇见两次绿灯的概率为(  )
A.$\frac{3}{5}$B.$\frac{13}{20}$C.$\frac{54}{125}$D.$\frac{27}{125}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知各项均为正数的等比数列{an}的前n项和为Sn,若a5=2a3+a4,且S5=62.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,数列{bn}的前n项和为Tn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知集合M={x|x=$\frac{k}{2}$+$\frac{1}{4}$,k∈Z},N={x|x=$\frac{k}{4}$+$\frac{1}{2}$,k∈Z},若x0∈M,则x0与N的关系是x0∈N.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,则k=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知命题p:$\frac{1}{a}$>$\frac{1}{4}$,命题q:?x∈R,ax2+1>0,则p成立是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

7.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若AB=3,AC边上的中线BD的长为$\sqrt{13}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案