相关习题
 0  236505  236513  236519  236523  236529  236531  236535  236541  236543  236549  236555  236559  236561  236565  236571  236573  236579  236583  236585  236589  236591  236595  236597  236599  236600  236601  236603  236604  236605  236607  236609  236613  236615  236619  236621  236625  236631  236633  236639  236643  236645  236649  236655  236661  236663  236669  236673  236675  236681  236685  236691  236699  266669 

科目: 来源: 题型:填空题

6.用秦九韶算法求n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,当x=x0时的值,其算法步骤如下:
第一步,输入n,an和x的值,
第二步,v=an,i=n-1,
第三步,输入i次项系数ai
第四步,v=vx+ai,i=i-1,
第五步:判断i是否大于或等于0,若是,则返回第三步;否则,输出多项式的值v.该算法中第四步空白处应该是v=vx+ai

查看答案和解析>>

科目: 来源: 题型:填空题

5.完成进位制之间的转化;把五进制转化为七进制412(5)=212(7)

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知命题p:若x>y,则-x<-y;命题q:若x<y,则x2>y2,在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知函数f(x)=log3x,x0∈[1,27],则不等式1≤f(x0)≤2成立的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{3}{13}$D.$\frac{2}{9}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.在下列三个命题中,真命题的个数是(  )
①?x0∈Z,x03<0;
②方程ax2+2x+1=0至少有一个负实数根的充分条件是a=0;
③抛物线y=4x2的准线方程是:y=1.
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

1.命题p:?x0≥2,x02-2x0-2>0的否定是(  )
A.?x0≥2,x02-2x0-2<0B.?x0<2,x02-2x0-2<0
C.?x<2,x2-2x-2≤0D.?x≥2,x2-2x-2≤0

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知点P(x,y)在椭圆x2+4y2=4上,则$\frac{3}{4}{x^2}+2x-{y^2}$的最大值为(  )
A.8B.7C.2D.-1

查看答案和解析>>

科目: 来源: 题型:选择题

19.给出定义:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的三个判断:
①y=f(x)的定义域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$];  
②点(k,0)是y=f(x)的图象的对称中心,其中k∈Z;
③函数y=f(x)在($\frac{1}{2}$,$\frac{3}{2}$]上是增函数.
则上述判断中所有正确的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=x2-x|x-a|-3a,a>0.
(1)若a=1,求f(x)的单调区间;
(2)求函数在x∈[0,3]上的最值;
(3)当a∈(0,3)时,若函数f(x)恰有两个不同的零点x1,x2,求$|{\frac{1}{x_1}-\frac{1}{x_2}}|$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知点P是圆心为F1的圆(x+1)2+y2=12上任意一点,点F2(1,0),若线段PF2的垂直平分线与半径PF1相交于点M.
(1)求动点M的轨迹方程;
(2)过点F2的直线l(l不与x轴重合)与M的轨迹交于不同的两点A,B,求△F1AB的内切圆半径r的最大值,并求出此时直线l的方程.

查看答案和解析>>

同步练习册答案