相关习题
 0  236522  236530  236536  236540  236546  236548  236552  236558  236560  236566  236572  236576  236578  236582  236588  236590  236596  236600  236602  236606  236608  236612  236614  236616  236617  236618  236620  236621  236622  236624  236626  236630  236632  236636  236638  236642  236648  236650  236656  236660  236662  236666  236672  236678  236680  236686  236690  236692  236698  236702  236708  236716  266669 

科目: 来源: 题型:填空题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为2,且两条渐近线与抛物线y2=2px(p>0)的准线交于A,B两点,O为坐标原点,若${S_{△AOB}}=\sqrt{3}$,则抛物线的方程为y2=4x.

查看答案和解析>>

科目: 来源: 题型:选择题

15.执行如图所示的程序框图,若输出的x值为31,则a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:选择题

14.若复数$z=\frac{4-2i}{1+i}$(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知数列{an}与{bn}的前n项和分别为An和Bn,且对任意n∈N*,an+1-an=2(bn+1-bn)恒成立.
(1)若An=n2,b1=2,求Bn
(2)若对任意n∈N*,都有an=Bn及$\frac{{b}_{2}}{{a}_{1}{a}_{2}}$+$\frac{{b}_{3}}{{a}_{2}{a}_{3}}$+$\frac{{b}_{4}}{{a}_{3}a4}$+…+$\frac{{b}_{n+1}}{{a}_{n}{a}_{n+1}}$<$\frac{1}{3}$成立,求正实数b1的取值范围;
(3)若a1=2,bn=2n,是否存在两个互不相等的整数s,t(1<s<t),使$\frac{{A}_{1}}{{B}_{1}}$,$\frac{{A}_{s}}{{B}_{s}}$,$\frac{{A}_{t}}{{B}_{t}}$成等差数列?若存在,求出s,t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=b2,过椭圆C的上顶点A的直线l:y=kx+b分别交圆O、椭圆C于不同的两点P、Q,设$\overrightarrow{AP}$=λ$\overrightarrow{PQ}$.
(1)若点P(-3,0),点Q(-4,-1),求椭圆C的方程;
(2)若λ=3,求椭圆C的离心率e的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.
(1)求证:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=|x-1|+|x-2|,记f(x)的最小值为k.
(1)解不等式:f(x)≤x+1;
(2)是否存在正数a、b,同时满足:2a+b=k,$\frac{1}{a}$+$\frac{2}{b}$=4?若存在,求出a、b的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=-2xlnx+x2-2ax+a2.记g(x)为f(x)的导函数.
(1)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+y+3=0,求a的值;
(2)讨论g(x)=0的解的个数;
(3)证明:对任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1.

查看答案和解析>>

科目: 来源: 题型:选择题

8.在△ABC中,角A、B、C的对边分别为a,b,c,且b(2sinB+sinA)+(2a+b)sinA=2csinC,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.在区间[-3,3]中随机取一个实数k,则事件“直线y=kx与圆(x-2)2+y2=1相交”发生的概率为(  )
A.$\frac{\sqrt{3}}{9}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案