相关习题
 0  236526  236534  236540  236544  236550  236552  236556  236562  236564  236570  236576  236580  236582  236586  236592  236594  236600  236604  236606  236610  236612  236616  236618  236620  236621  236622  236624  236625  236626  236628  236630  236634  236636  236640  236642  236646  236652  236654  236660  236664  236666  236670  236676  236682  236684  236690  236694  236696  236702  236706  236712  236720  266669 

科目: 来源: 题型:解答题

16.已知动圆P过点F(1,0)且和直线l:x=-1相切.
(1)求动点P的轨迹E的方程;
(2)已知点M(-1,0),若过点F的直线与轨迹E交于A,B两点,求证:直线MA,MB的斜率之和为定值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$成立,则双曲线的离心率为(  )
A.4B.$\frac{5}{2}$C.2D.$\frac{5}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1(-c,0)的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,且AB⊥AF2,则椭圆E的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.设α,β,γ表示平面,l表示直线,则下列命题中,错误的是(  )
A.如果α⊥β,那么α内一定存在直线平行于β
B.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
C.如果α不垂直于β,那么α内一定不存在直线垂直于β
D.如果α⊥β,那么α内所有直线都垂直于β

查看答案和解析>>

科目: 来源: 题型:选择题

12.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则直线AB的方程是(  )
A.x+3y=0B.3x-y=0C.3x-y-9=0D.3x+y+9=0

查看答案和解析>>

科目: 来源: 题型:选择题

11.△ABC中,B(-4,0),C(4,0),|AB|+|AC|=10,则顶点A的轨迹方程是(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±3)B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±5)
C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±3)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±5)

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为B,右焦点为F,∠OFB=30°,P为线段BF的中点,且线段OP长为1.
(Ⅰ)试确定椭圆C的方程;
(Ⅱ)若直线l与圆E:x2+y2=3相切且交椭圆C于M,N两点,求△OMN面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知命题p:对?x∈R,均有ax2+ax+1>0恒成立;命题q:双曲线的标准方程是$\frac{{x}^{2}}{1-a}$$+\frac{{y}^{2}}{a-3}$=1,若p∧q为真命题,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.若等比数列{an}的前n项和Sn=a+($\frac{1}{2}$)n-2,则a=-4.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,点A,B分别是椭圆C的左、右顶点,点P是椭圆C上异于A,B两点的任意一点,当△PAB为等腰三角形时,则△PAB的面积为2,.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线AP与直线x=4交于点M,直线MB交椭圆C于点Q,试问:直线PQ是否过定点?若是,求出定点的坐标,若不是,说明理由.

查看答案和解析>>

同步练习册答案