相关习题
 0  236544  236552  236558  236562  236568  236570  236574  236580  236582  236588  236594  236598  236600  236604  236610  236612  236618  236622  236624  236628  236630  236634  236636  236638  236639  236640  236642  236643  236644  236646  236648  236652  236654  236658  236660  236664  236670  236672  236678  236682  236684  236688  236694  236700  236702  236708  236712  236714  236720  236724  236730  236738  266669 

科目: 来源: 题型:选择题

10.圆心在直线$y=\frac{1}{3}x$上的圆C与y轴的正半轴相切,圆C截x轴所得的弦长为$4\sqrt{2}$,则圆C的标准方程为(  )
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知三棱锥S-ABC,其三视图中的正(主)视图和侧(左)视图如图所示,则该三棱锥的体积为(  )
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$16\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$\overrightarrow a•\overrightarrow b=1$,则向量$\overrightarrow a$,$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知一个长方体的表面积为48(单位:cm2),12条棱长度之和为36(单位:cm),则这个长方体的体积的取值范围是[16,20](单位:cm3).

查看答案和解析>>

科目: 来源: 题型:填空题

6.在正项等比数列{an}中,若a4+a3-2a2-2a1=6,则a5+a6的最小值为48.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图所示,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,且斜边AB=2$\sqrt{2}$,侧棱AA1=4,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ∈R).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当λ为何值时,B1E⊥面CDE.

查看答案和解析>>

科目: 来源: 题型:解答题

4.数列{an}的前n项和Sn满足:Sn=n2,数列{bn}满足:①b3=$\frac{1}{4}$,②bn>0,③bn+12+bn+1bn-bn2=0.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

3.直线l过点A(1,1),且l在y轴上的截距的取值范围为(0,2),则直线l的斜率的取值范围为(-1,1).

查看答案和解析>>

科目: 来源: 题型:选择题

2.函数f(x)在定义域(0,+∞)内恒满足:①f(x)>0;②2f(x)<xf′(x)<3f(x),其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$B.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$C.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$D.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知正四面体A-BCD的棱长为1,且$\overrightarrow{AE}$=2$\overrightarrow{EB}$,$\overrightarrow{AF}$=2$\overrightarrow{FD}$,则$\overrightarrow{EF}$•$\overrightarrow{DC}$=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步练习册答案