相关习题
 0  236598  236606  236612  236616  236622  236624  236628  236634  236636  236642  236648  236652  236654  236658  236664  236666  236672  236676  236678  236682  236684  236688  236690  236692  236693  236694  236696  236697  236698  236700  236702  236706  236708  236712  236714  236718  236724  236726  236732  236736  236738  236742  236748  236754  236756  236762  236766  236768  236774  236778  236784  236792  266669 

科目: 来源: 题型:选择题

12.若双曲线的顶点为椭圆2x2+y2=2长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是(  )
A.x2-y2=1B.y2-x2=1C.y2-x2=2D.x2-y2=2

查看答案和解析>>

科目: 来源: 题型:选择题

11.设a+b<0,且b>0,则下列不等式正确的是(  )
A.b2>-abB.a2<-abC.a2<b2D.a2>b2

查看答案和解析>>

科目: 来源: 题型:解答题

10.设t∈R,已知p:函数f(x)=x2-tx+1有零点,q:?x∈R,|x-1|≥2-t2
(Ⅰ)若q为真命题,求t的取值范围;
(Ⅱ)若p∨q为假命题,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=ax+$\frac{2a-1}{x}$+1-3a(a>0).
(Ⅰ)当a=1时,求函数y=f(x)在点(2,f(2))处的切线方程(写成一般式).
(Ⅱ)若不等式f(x)≥(1-a)lnx在x∈[1,+∞)时恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.圆C1:x2+y2+2x+8y-8=0和圆C2:x2+y2-4x-5=0的位置关系为相交.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+$\sqrt{3}$a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若a+b=6,求△ABC的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数$f(x)=cos2xcosθ-sin2xcos({\frac{π}{2}-θ})({|θ|<\frac{π}{2}})$在$({-\frac{3π}{8},-\frac{π}{6}})$上单调递增,则$f({\frac{π}{16}})$的最大值为1.

查看答案和解析>>

科目: 来源: 题型:选择题

5.在三棱锥P-ABC中,PA⊥平面ABC,PA=2,BC=$\sqrt{2}$,又∠BAC=135°,则该三棱锥外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,且与直线x+y-1=0相交于A,B两点.
(1)若椭圆C1的两焦点分别为双曲线${C_2}:{x^2}-\frac{y^2}{2}=1$的顶点,且以椭圆上任一点P和左右焦点F1,F2为顶点的△PF1F2的周长为$2\sqrt{3}+2$,求椭圆C1的标准方程;
(2)在(1)的条件下,求弦AB的长;
(3)当椭圆的离心率e满足$\frac{{\sqrt{3}}}{3}≤e≤\frac{{\sqrt{2}}}{2}$,且以AB为直径的圆经过坐标原点O,求椭圆长轴长的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在如图所示的几何体中,AF⊥平面ABCD,EF∥AB,四边形ABCD为矩形,AD=2,AB=AF=2EF=1,P是棱DF的中点.
(1)求证:BF∥平面ACP;
(2)求异面直线CE与AP所成角的余弦值;
(3)求二面角D-AP-C的余弦值.

查看答案和解析>>

同步练习册答案