相关习题
 0  236623  236631  236637  236641  236647  236649  236653  236659  236661  236667  236673  236677  236679  236683  236689  236691  236697  236701  236703  236707  236709  236713  236715  236717  236718  236719  236721  236722  236723  236725  236727  236731  236733  236737  236739  236743  236749  236751  236757  236761  236763  236767  236773  236779  236781  236787  236791  236793  236799  236803  236809  236817  266669 

科目: 来源: 题型:解答题

6.设正项等比数列{bn}的前n项和为Sn,b3=4,S3=7,数列{an}满足an+1-an=n+1(n∈N*),且a1=b1
(Ⅰ)求数列{an}的通项公式
(Ⅱ)求数列{$\frac{1}{{a}_{n}}$}的前n项和.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知A,B,C是半径为l的圆O上的三点,AB为圆O的直径,P为圆O内一点(含圆周),则$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范围为[-$\frac{4}{3}$,4].

查看答案和解析>>

科目: 来源: 题型:填空题

4.在一个长方体的三条棱长分别为3、8、9,若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为3.

查看答案和解析>>

科目: 来源: 题型:解答题

3.知函数f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωxsinωx+t(ω>0),若f(x)图象上有相邻两个对称轴间的距离为$\frac{3π}{2}$,且当x∈[0,π]时,函数f(x)的最小值为0.
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(B)=1,且2sin2C=cosC+cos(A-B),求∠B与sinA的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.在数列{an}及{bn}中,an+1=an+bn+$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,bn+1=an+bn-$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,a1=1,b1=1.设cn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$,则数列{cn}的前2017项和为4034.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设Sn为数列{an}的前n项和,若2an+(-1)n•an=2n+(-1)n•2n(n∈N*),则S10=$\frac{2728}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.设函数$f(x)=\left\{\begin{array}{l}{2^{1-x}}\;,x≤1\\ 1-{log_2}x\;,x>1\end{array}\right.$,则f[f(-1)]=-1.

查看答案和解析>>

科目: 来源: 题型:选择题

19.函数f(x)=sin2(x+$\frac{π}{4}$)-sin2(x-$\frac{π}{4}$)是(  )
A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数
C.最小正周期为π的偶函数D.最小正周期为π的奇函数

查看答案和解析>>

科目: 来源: 题型:选择题

18.下列命题中,正确的是(  )
A.|$\overrightarrow{a}$|=1⇒$\overrightarrow{a}$=±1B.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}$∥$\overrightarrow{b}$⇒$\overrightarrow{a}$=$\overrightarrow{b}$C.$\overrightarrow{a}$=$\overrightarrow{b}$⇒$\overrightarrow{a}$∥$\overrightarrow{b}$D.$\overrightarrow{a}$∥$\overrightarrow{0}$⇒|$\overrightarrow{a}$|=0

查看答案和解析>>

科目: 来源: 题型:填空题

17.若在△ABC内部的点P满足$\frac{{S}_{△PAB}}{PA•AB}$=$\frac{{S}_{△PBC}}{PB•BC}$=$\frac{{S}_{△PAC}}{PA•AC}$,则PA+PB+PC=$\sqrt{7}$.

查看答案和解析>>

同步练习册答案