相关习题
 0  236629  236637  236643  236647  236653  236655  236659  236665  236667  236673  236679  236683  236685  236689  236695  236697  236703  236707  236709  236713  236715  236719  236721  236723  236724  236725  236727  236728  236729  236731  236733  236737  236739  236743  236745  236749  236755  236757  236763  236767  236769  236773  236779  236785  236787  236793  236797  236799  236805  236809  236815  236823  266669 

科目: 来源: 题型:选择题

6.小赵、小钱、小孙、小李到 4 个景点旅游,每人只去一个景点,设事件 A=“4 个人去的景点不相同”,事件B=“小赵独自去一个景点”,则P( A|B)=(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数f ( x)=2ax-a+3,若?x0∈(-1,1),f ( x0 )=0,则实数 a 的取值范围是(  )
A.(-∞,-3)∪(1,+∞)B.(-∞,-3)C.(-3,1)D.(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

4.执行如图所示的程序框图,若输入的 x=2017,则输出的i=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知复数$z=\frac{a+i}{2-i}$(i 为虚数单位)的共轭复数在复平面内对应的点在第三象限,则实数a的取值范围是(  )
A.$({-2,\frac{1}{2}})$B.$({-\frac{1}{2},2})$C.(-∞,-2)D.$({\frac{1}{2},+∞})$

查看答案和解析>>

科目: 来源: 题型:选择题

2.设A,B是两个非空集合,定义集合A-B={x|x∈A且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=(  )
A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,5}

查看答案和解析>>

科目: 来源: 题型:解答题

1.设函数f(x)=|x-2|+2x-3,记f(x)≤-1的解集为M.
(Ⅰ)求M;
(Ⅱ)当x∈M时,证明:x[f(x)]2-x2f(x)≤0.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=acost\\ y=2sint\end{array}\right.$(t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为$ρcos({θ+\frac{π}{4}})=-2\sqrt{2}$.
(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(Ⅰ)证明:SD⊥平面SAB;
(Ⅱ)求四棱锥S-ABCD的高.

查看答案和解析>>

科目: 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知3acosC=2ccosA,$tanC=\frac{1}{2}$,
(Ⅰ)求B;
(Ⅱ)若b=5,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

17.在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:
①存在某个位置,使得直线AC与直线BD垂直;
②存在某个位置,使得直线AB与直线CD垂直;
③存在某个位置,使得直线AD与直线BC垂直.
其中正确结论的序号是②.(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案