相关习题
 0  236656  236664  236670  236674  236680  236682  236686  236692  236694  236700  236706  236710  236712  236716  236722  236724  236730  236734  236736  236740  236742  236746  236748  236750  236751  236752  236754  236755  236756  236758  236760  236764  236766  236770  236772  236776  236782  236784  236790  236794  236796  236800  236806  236812  236814  236820  236824  236826  236832  236836  236842  236850  266669 

科目: 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超过x的最大整数.设n∈N*,定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),则下列说法正确的有
①y=$\sqrt{x-f(x)}$的定义域为$[{\frac{2}{3},2}]$;
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③${f_{2016}}(\frac{8}{9})+{f_{2017}}(\frac{8}{9})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},
则M中至少含有8个元素.(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知圆C:x2+y2=4,点P为直线x+2y-9=0上一动点,过点P向圆C引两条切线PA、PB,A、B为切点,则直线AB经过定点(  )
A.$(\frac{4}{9},\frac{8}{9})$B.$(\frac{2}{9},\frac{4}{9})$C.(2,0)D.(9,0)

查看答案和解析>>

科目: 来源: 题型:选择题

13.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的体积是(  )
A.$\frac{176}{3}$B.$\frac{160}{3}$C.$\frac{128}{3}$D.32

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知f(x)=|x+1|+|x-1|.
(Ⅰ)求不等式f(x)<4的解集;
(Ⅱ)若不等式f(x)-|a-1|<0有解,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.平面上动点P到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(Ⅰ) 求动点P的轨迹C的方程;
(Ⅱ)过点F作直线与曲线C交于两点A,B,与直线l交于点M,求|MA|•|MB|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,点M是SD的中点,AN⊥SC,且交SC于点N.
(Ⅰ) 求证:SB∥平面ACM; 
(Ⅱ) 求点C到平面AMN的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在平面四边形ABCD中,AB⊥AD,AB=1,AC=$\sqrt{7}$,△ABC的面积S△ABC=$\frac{{\sqrt{3}}}{2}$,DC=$\frac{{4\sqrt{7}}}{5}$
(Ⅰ)求BC的长;
(Ⅱ)求∠ACD的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

8.若函数f(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0,f(x0)),记函数f(x)的导函数为g(x),则有g'(x0)=0.若函数f(x)=x3-3x2,则$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$=-8066.

查看答案和解析>>

科目: 来源: 题型:填空题

7.过点$P(1,\sqrt{2})$的直线l将圆(x-2)2+y2=8分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),且${b_n}={a_n}cos\frac{2nπ}{3}$,记Sn为数列{bn}的前n项和,则S24=(  )
A.294B.174C.470D.304

查看答案和解析>>

同步练习册答案