相关习题
 0  236659  236667  236673  236677  236683  236685  236689  236695  236697  236703  236709  236713  236715  236719  236725  236727  236733  236737  236739  236743  236745  236749  236751  236753  236754  236755  236757  236758  236759  236761  236763  236767  236769  236773  236775  236779  236785  236787  236793  236797  236799  236803  236809  236815  236817  236823  236827  236829  236835  236839  236845  236853  266669 

科目: 来源: 题型:选择题

5.设函数f(x)是二次函数,若f(x)ex的一个极值点为x=-1,则下列图象不可能为f(x)图象的是(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

4.设函数f(x)在(m,n)上的导函数为g(x),x∈(m,n),g(x)若的导函数小于零恒成立,则称函数f(x)在(m,n)上为“凸函数”.已知当a≤2时,$f(x)=\frac{1}{6}{x^2}-\frac{1}{2}a{x^2}+x$,在x∈(-1,2)上为“凸函数”,则函数f(x)在(-1,2)上结论正确的是(  )
A.既有极大值,也有极小值B.有极大值,没有极小值
C.没有极大值,有极小值D.既无极大值,也没有极小值

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知$f(x)=\frac{lnx}{x}$,则(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目: 来源: 题型:选择题

2.函数$f(x)=cos(ωx+\frac{π}{6})(ω>0)$的最小正周期是π,则其图象向右平移$\frac{π}{3}$个单位后的单调递减区间是(  )
A.$[{-\frac{π}{4}+kπ,\frac{π}{4}+kπ}](k∈Z)$B.$[{\frac{π}{4}+kπ,\frac{3π}{4}+kπ}](k∈Z)$
C.$[{\frac{π}{12}+kπ,\frac{7π}{12}+kπ}](k∈Z)$D.$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ}](k∈Z)$

查看答案和解析>>

科目: 来源: 题型:选择题

1.方程lnx+2x=6的根所在的区间为(  )
A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是夹角为60°的两个单位向量,则“实数k=4”是“$(2\overrightarrow{e_1}-k\overrightarrow{e_2})⊥\overrightarrow{e_1}$”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知角α(0°≤α<360°)终边上一点的坐标为(sin215°,cos215°),则α=(  )
A.215°B.225°C.235°D.245°

查看答案和解析>>

科目: 来源: 题型:选择题

18.命题“?x0∈(1,+∞),x02+2x0+2≤0”的否定形式是(  )
A.$?x∈(1,+∞),x_0^2+2{x_0}+2>0$B.$?x∈({-∞,1}],x_0^2+2{x_0}+2>0$
C.$?{x_0}∈(1,+∞),x_0^2+2{x_0}+2>0$D.$?{x_0}∈({-∞,1}],x_0^2+2{x_0}+2>0$

查看答案和解析>>

科目: 来源: 题型:选择题

17.设集合A={-1,0,1,2},B={x|x-1<0},则A∩B=(  )
A.(-1,1)B.(-1,0)C.{-1,0,1}D.{-1,0}

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=2ln(x+1)+$\frac{1}{2}m{x^2}$-(m+1)x有且只有一个极值.
(Ⅰ)求实数m的取值范围;
(Ⅱ)若f(x1)=f(x2)(x1≠x2),求证:x1+x2>2.

查看答案和解析>>

同步练习册答案